Skip to main content

Properties of Citric Acid and Its Solutions

  • Chapter
  • First Online:
Citric Acid

Abstract

ChapterĀ 2 is devoted to properties of solid citric acid and aqueous and organic solutions of it. Detailed phase equilibria in the citric acid + water system (melting, freezing, boiling, solubilities and vapour pressures curves) are presented, correlated and thermodynamically analyzed. Dynamic and other physical properties (viscosities, diffusion coefficients, thermal and electrical conductivities, surface tensions and indices of refraction) are examined. Solubilities of citric acid in organic solvents and ternary citric acid + alcohol + water and citric acid + tertiary amine + water systems are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thunberg T (1953) Occurrence and significance of citric acid in the animal organism. Physiol Rev 33:1ā€“12

    CASĀ  Google ScholarĀ 

  2. Bennett GM, Yuill JL (1935) The crystal form of anhydrous citric acid. J Chem Soc 130:130ā€“130

    Google ScholarĀ 

  3. Nordman CE, Weldon AS, Patterson AL (1960) X-ray crystal analysis of the substrates of aconitase. II. Anhydrous citric acid. Acta Cryst 13:418ā€“426

    CASĀ  Google ScholarĀ 

  4. Glusker JP, Minkin JA, Patterson AL (1969) X-ray crystal analysis of the substrates of aconitase. IX. Refinement of the structure of anhydrous citric acid. Acta Cryst 25:1066ā€“1072

    CASĀ  Google ScholarĀ 

  5. Burns DM, Iball J (1954) Unit cells and space groups of citric acid and some potassium and sodium citrates. Acta Cryst 7:137ā€“138

    CASĀ  Google ScholarĀ 

  6. Roelofsen G, Kanters JA (1972) Citric acid monohydrate, C6H8O7 Ā·H2O. Cryst Struct Comm 1:23ā€“26

    CASĀ  Google ScholarĀ 

  7. Marshall JL (1938) A phase study of the system: citric acid and water. Aust Chem Int J Proc 5:383ā€“396

    CASĀ  Google ScholarĀ 

  8. De Kruif CG, Van Miltenburg JC, Sprenkels AJJ, Stevens G, De Graaf W, DeWit HGM (1982) Thermodynamic properties of citric acid and the system citric acidā€“water. Thermochim Acta 58:341ā€“354

    CASĀ  Google ScholarĀ 

  9. Oechler F (1944) Caffeine and citric acid. Pharm Zentralhalle fuer Dtschl 85:1ā€“5

    CASĀ  Google ScholarĀ 

  10. Dalman LH (1937) The solubility of citric and tartaric acids in water. J Am Chem Soc 59:2547ā€“2549

    CASĀ  Google ScholarĀ 

  11. Slobodin YM, Novotelnova NY (1968) Solubility of citric acid. Zhurn Prikl Khim 41:1347ā€“1348

    CASĀ  Google ScholarĀ 

  12. Lafontaine A, Sanselme M, Cartigny Y, Cardinael P, Coquerel G (2013) Characterization of the transition between the monohydrate and anhydrous citric acid. J Therm Anal Calorim 112:307ā€“315

    CASĀ  Google ScholarĀ 

  13. NĆ½vlt J (1995) The Ostwald rule of stages. Cryst Res Technol 30:443ā€“449

    Google ScholarĀ 

  14. Helmdach L, Feth MP, Ulrich J (2012) Online analytical investigations on solvent-temperature and water vapour-induced phase transformations of citric acid. Cryst Res Technol 47:967ā€“984

    CASĀ  Google ScholarĀ 

  15. Laguerie C, Aubry M, Couderc JP (1976) Some physicochemical data on monohydrate citric acid in water: solubility, density, viscosity, diffusivity, pH of standard solution, and refractive index. J Chem Eng Data 21:85ā€“87

    CASĀ  Google ScholarĀ 

  16. Wilhoit RC, Shiao D (1964) Thermochemistry of biologically important compounds. Heats of combustion of solid organic acids. J Chem Eng Data 9:595ā€“599

    CASĀ  Google ScholarĀ 

  17. Khan MS, Narasimhamurty TS (1983) Elastic constants of citric acid monohydrate. Solid State Comm 48:169ā€“172

    CASĀ  Google ScholarĀ 

  18. HaussĆ¼hl S, Jiyang W (1999) Elastic properties of citric acid, citric acid hydrate, trilithium citrate tetrahydrate, trisodium citrate pentahydrate and tripotassium citrate hydrate. Z Kristallogr 214:85ā€“89

    Google ScholarĀ 

  19. Mullin JW, Leci CI (1969) Some nucleation characteristics of aqueous citric acid solutions. J Cryst Growth 5:75ā€“76

    CASĀ  Google ScholarĀ 

  20. Laguerie C, Angelino H (1975) Comparaison entre la dissolution et la croissance de cristaux dā€™acide citrique monohydrate en lit fluidisĆ©. Chem Eng J 10:41ā€“48

    CASĀ  Google ScholarĀ 

  21. Laguerie C, Muratet G, Angelino H (1977) Choix dā€™une mĆ©thode de determination des vitesses de croissance crystalline en couche fluidisĆ©e: application Ć  la croissance de cristaux dā€™acide citrique monohydrate. Chem Eng J 14:17ā€“25

    CASĀ  Google ScholarĀ 

  22. Wang ML, Huang HT, Estrin J (1981) Secondary nucleation of citric acid due to fluid forces in a Couette flow crystallizer. Am Inst Chem Eng J 27:312ā€“315

    CASĀ  Google ScholarĀ 

  23. Ohgaki K, Makihara Y, Morishita H, Ueda M, Hirokawa N (1992) Heterogeneity in aqueous solutions: electron microscopy of citric acid solutions. Chem Eng Sci 47:1819ā€“1823

    CASĀ  Google ScholarĀ 

  24. van Drunen MA, Finsy R, Merkus HG, Scarlett B, van Rosmalen GM (1993) Measurements of cluster formation in aqueous citric acid solutions by photon correlation spectroscopy. J Cryst Growth 134:196ā€“202

    CASĀ  Google ScholarĀ 

  25. Ueda M, Hirokawa N, Harano Y, Moritoki M, Ohgaki K (1995) Change in microstructure of aqueous citric acid solution under crystallization. J Cryst Growth 156:261ā€“266

    CASĀ  Google ScholarĀ 

  26. Bravi M, Mazzarotta B (1998) Primary nucleation of citric acid monohydrate: influence of impurities. Chem Eng Sci 70:197ā€“202

    CASĀ  Google ScholarĀ 

  27. Groen H, Roberts KJ (2001) Nucleation, growth and pseudo-polymorphic behavior of citric acid as monitored in situ by attenuated total reflection Fourier transform infrared spectroscopy. J Phys Chem B 105:10723ā€“10730

    CASĀ  Google ScholarĀ 

  28. Fevotte G, Caillet A, Sheibat-Othman NA (2007) Population balance model of the solution-mediated phase transition of citric acid. Am Int Chem Eng J 53:2578ā€“2589

    CASĀ  Google ScholarĀ 

  29. Caillet A, Rivoire A, Galvan JM, Puel F, Fevotte G (2007) Crystallization of monohydrate citric acid. 1. In situ monitoring through the joint use of Raman spectroscopy and image analysis. Cryst Growth Des 7:2080ā€“2087

    CASĀ  Google ScholarĀ 

  30. Caillet A, Sheibat-Othman N, Fevotte G (2007) Crystallization of monohydrate citric acid. 2. Modeling trough population balance equations. Cryst Growth Des 7:2088ā€“2095

    CASĀ  Google ScholarĀ 

  31. Caillet A, Puel F, Fevotte G (2008) Quantitative in situ monitoring of citric acid phase transition in water using Raman spectroscopy. Chem Eng Process 47:377ā€“382

    CASĀ  Google ScholarĀ 

  32. Ginde RM, Myerson AS (1992) Cluster size estimation in binary supersaturated solutions. J Cryst Growth 116:41ā€“47

    CASĀ  Google ScholarĀ 

  33. Chiou WL, Riegelman S (1969) Preparation and dissolution characteristics of several fast-release solid dispersions of griseofulvin. J Pharm Sci 58:1505ā€“1509

    CASĀ  Google ScholarĀ 

  34. Summer MP, Evener RP (1976) Preparation and properties of solid dispersion system containing of citric acid and primidone. J Pharm Sci 65:1913ā€“1617

    Google ScholarĀ 

  35. Summer MP, Evener RP (1977) Effect of primidone concentration on glass transition temperature and dissolution of solid dispersion system containing of primidone and citric acid. J Pharm Sci 66:825ā€“828

    Google ScholarĀ 

  36. Timko RJ, Lordi NG (1979) Thermal characterization of citric acid solid dispersions with benzoic acid and phenobarbital. J Pharm Sci 68:601ā€“605

    CASĀ  Google ScholarĀ 

  37. Summer MP, Evener RP (1980) Glass transition temperature of citric acid. J Pharm Sci 69:612ā€“613

    Google ScholarĀ 

  38. Timko RJ, Lordi NG (1982) The effect of thermal history on the transition temperature of citric acid glass. J Pharm Sci 71:1185ā€“1186

    CASĀ  Google ScholarĀ 

  39. Lu Q, Zografi G (1997) Properties of citric acid at the glass transition. J Pharm Sci 86:1374ā€“1378

    CASĀ  Google ScholarĀ 

  40. Kodoya S, Izutsu K, Yonemochi E, Terada K, Yomota C, Kawanishi T (2008) Glass-state amorphous salt solids formed by freeze-drying of amines and hydroxyl carboxylic acids: effect of hydrogen-bonding and electrostatic interactions. Chem Pharm Bull 56:821ā€“826

    Google ScholarĀ 

  41. Hoppu P, Jouppila K, Rantanen J, Schantz S, Juppo AM (2007) Characterization of blends of paracetamol and citric acid. J Pharm Pharmacol 59:373ā€“381

    CASĀ  Google ScholarĀ 

  42. Hoppu P, Hietala S, Schantz S, Juppo AM (2009) Rheology and molecular mobility of amorphous blends of citric acid and paracetamol. Eur J Pharm Biopharm 71:55ā€“63

    CASĀ  Google ScholarĀ 

  43. Lienhard DM, Zobrist B, Zuend A, Krieger UK, Peter T (2012) Experimental evidence for excess entropy discontinuities in glass-forming solutions. J Chem Phys 136:136ā€“144

    Google ScholarĀ 

  44. Chiou WL, Riegelman S (1971) Pharmaceutical applications of solid dispersion systems. J Pharm Sci 60:1281ā€“1302

    CASĀ  Google ScholarĀ 

  45. Maltini E, Anese M, Shtylla I (1997) State diagrams of some organic acidā€“water systems of interest in food. Cryo-Lett 18:263ā€“268

    CASĀ  Google ScholarĀ 

  46. Murray BJ (2008) Inhibition of ice crystallization in highly viscous aqueous organic acid droplets. Atmos Chem Phys 8:5423ā€“5433

    CASĀ  Google ScholarĀ 

  47. Moreira T (1984) DeterminaciĆ³n del diagrama de fases de soluciones acuosas de Ć”cido citrico a temperaturas de congelacion mediante anĆ”lisis tĆ©rmico differencial. Rev Cienc Quim 15:159ā€“162

    CASĀ  Google ScholarĀ 

  48. Saxena P, Hildemann LM (1999) Water-soluble organics in atmospheric particles: a critical review of the literature and applications of thermodynamics to identify candidate compounds. J Atmos Chem 24:57ā€“109

    Google ScholarĀ 

  49. Choi MY, Chan CK (2002) The effects of organic species on hygroscopic behaviors of inorganic aerosols. Environ Sci Technol 36:2422ā€“2428

    CASĀ  Google ScholarĀ 

  50. Raatikainen T, Laaksonen A (2005) Application of several activity coefficient models to waterā€“organicā€“electrolyte aerosols of atmospheric interest. Atmos Chem Phys 5:2475ā€“2495

    CASĀ  Google ScholarĀ 

  51. Topping DO, McFiggans GB, Kiss G, Varga Z, Facchini MC, Decesari S, Mircea M (2007) Surface tensions of multicomponent mixed inorganic/organic aqueous systems of atmospheric significance: measurements, model prediction and importance for cloud activation predictions. Atmos Chem Phys 7:2371ā€“2398

    CASĀ  Google ScholarĀ 

  52. Zardini AA, Sjogren S, Marcolli C, Krieger UK, Gysel M, Weingartner E, Baltensperger U, Peter T (2008) A combined particle trap/HTDMA hygroscopicity study of mixed inorganic/organic aerosol particles. Atmos Chem Phys 8:5589ā€“5601

    CASĀ  Google ScholarĀ 

  53. Murray BJ (2008) Enhanced formation of cubic ice in aqueous organic acid droplets. Environ Res Lett 3:025008

    Google ScholarĀ 

  54. Frosh M, Prisle NL, Bilde M, Varga Z, Kiss G (2011) Joint effect of organic and inorganic salts on cloud droplet activation. Atmos Chem Phys 11:3895ā€“3911

    Google ScholarĀ 

  55. Lienhard DM, Bones D, Zuend A, Krieger U, Reid JP, Peter T (2012) Measurements of thermodynamic and optical properties of selected aqueous organic and organicā€“inorganic mixtures of atmospheric relevance. J Phys Chem A 116:9954ā€“9968

    CASĀ  Google ScholarĀ 

  56. Varga Z, Kiss G, Hansson HC (2007) Modelling the cloud condensation nucleus activity of organic acids on the basis of surface tension and osmolality measurements. Atmos Chem Phys 7:4601ā€“4611

    CASĀ  Google ScholarĀ 

  57. Corley JM, Killoy WJ (1982) Stability of citric acid solutions during a five month period. J Periodontol 6:390ā€“392

    Google ScholarĀ 

  58. Evans DM, Hoare FE, Melia TP (1962) Heat capacity, enthalpy and entropy of citric acid monohydrate. Trans Faraday Soc 58:1511ā€“1514

    CASĀ  Google ScholarĀ 

  59. Chappel FP, Hoare FE (1958) The heat of combustion of citric acid monohydrate. Trans Faraday Soc 54:367ā€“371

    CASĀ  Google ScholarĀ 

  60. Burton K (1955) The free energy change associated with the hydrolysis of the thiol ester bond of acetyl coenzyme A. Biochem J 59:44ā€“46

    CASĀ  Google ScholarĀ 

  61. Korchergina LA, Volkov AV, Krutov DV, Krutova ON (2006) The standard enthalpies of formation of citric and tartaric acids and their dissociation products in aqueous solutions. Russ J Phys Chem 80:899ā€“903

    Google ScholarĀ 

  62. Baxter GP, Lansing JE (1920) The aqueous pressure of some hydrated crystals. Oxalic acid, strontium chloride and sodium sulfate. J Am Chem Soc 42:419ā€“426

    CASĀ  Google ScholarĀ 

  63. Schumb WC (1923) The dissociation pressures of certain salt hydrates by the gas-current saturation method. J Am Chem Soc 45:342ā€“354

    CASĀ  Google ScholarĀ 

  64. Melia TP (1964) Dissociation pressures of citric acid monohydrate. Trans Faraday Soc 60:1286ā€“1288

    CASĀ  Google ScholarĀ 

  65. Melia TP (1965) Dissociation pressures of citric acid monohydrate. (Amendment to Trans. Faraday Soc., 1964, 60, 1286). Trans Faraday Soc 61:594

    CASĀ  Google ScholarĀ 

  66. Kendall J, Booge JE, Andrews JC (1917) Addition compound formation in aqueous solutions. The stability of hydrates and the determination of hydration in solution. J Am Chem Soc 39:2303ā€“2323

    CASĀ  Google ScholarĀ 

  67. Hall RE, Sherill MS (1926) Freezing point lowering of aqueous solutions. In: Washburn EW (ed) International Critical Tables of Numerical Data Physics, Chemistry and Technology, volĀ IV. McGraw-Hill, New York, pĀ 263

    Google ScholarĀ 

  68. Apelblat A, Manzurola E (2003) Cryoscopic studies in the citric acidā€“water system. J Mol Liq 103ā€“104:201ā€“210

    Google ScholarĀ 

  69. Kremann R, Eitel H (1923) The ternary system sugarā€“citric acidā€“water. A contribution to the theory of fruit ices from the standpoint of the phase rule. Rec Trav Chim 42:539ā€“546

    CASĀ  Google ScholarĀ 

  70. Timmermans J (1960) The Physico-Chemical Constants of Binary Systems in Concentrated Solutions. Systems with inorganic + organic or inorganic compounds (excepting metallic derivatives), volĀ IV. Interscience Publishers, Inc., New York, pĀ 263, ppĀ 410ā€“413

    Google ScholarĀ 

  71. Lide DR (ed) (2001) CRC Handbook of Chemistry and Physics, 82ndĀ edn. CRC, Boca Raton, ppĀ 8ā€“61

    Google ScholarĀ 

  72. Robinson RA, Stokes RH (1965) Electrolyte Solutions, 2nd revised edn. Butterworths, London

    Google ScholarĀ 

  73. Haase R, Schƶnert H (1969) Solidā€“liquid equilibrium. Pergamon, Oxford

    Google ScholarĀ 

  74. Bates RG, Pinching GD (1949) Resolution of the dissociation constants of citric acid at 0ā€“50Ā° and determination of certain related thermodynamic functions. J Am Chem Soc 71:1274ā€“1283

    CASĀ  Google ScholarĀ 

  75. Smith RP, Johnson GC (1941) The boiling point elevation, IV. Potassium chloride in water. J Am Chem Soc 63:1351ā€“1353

    Google ScholarĀ 

  76. Harned HS, Owen BB (1958) The Physical Chemistry of Electrolyte Solutions, 3rd edn. Reinhold Publ Co., New York

    Google ScholarĀ 

  77. Apelblat A (2008) The boiling point elevations of electrolyte solutions. Activity and osmotic coefficients at the boiling point temperatures. In: Bostrelli DV (ed) Solution Chemistry Research Progress. Nova Science, Inc., New York, ppĀ 133ā€“148

    Google ScholarĀ 

  78. Martinez dela Cuesta PJ, Rodrigez Maroto JM, Wucherpfennig AT (1986) Determinacion de datos para el diseno de evaporadores. Aplicacion de acidos organicos y sus sales. Parte I. Acido citrico, citrico sodico y citrico potasico. Ing Quim (Madrid) 18:219ā€“223

    CASĀ  Google ScholarĀ 

  79. Bogdanov SN, Malyugin GI, Averbukh DA, Metkin VP, Christova TG (1973) Temperature depression and heat capacity of solutions of citric acid production. Izv Vysshikh Uchebnykh Zavedeni Pischchevaya Tekhnol 16:127ā€“129

    Google ScholarĀ 

  80. Averbukh DA, Metkin VP, Chistova TG (1977) Thermophysical and physico-chemical parameters of solutions in citric acid production. CNIITENI Food Scientific-Technical Reference Book No 2, pĀ 15

    Google ScholarĀ 

  81. Saul A, Wagner W (1987) International equations for the saturation properties of ordinary water substance. J Phys Chem Ref Data 16:893ā€“901

    CASĀ  Google ScholarĀ 

  82. Dalman LH (1937) Ternary systems of urea and acids. IV. Urea, citric acid and water. V. Urea, acetic acid and water. VI. Urea, tartaric acid and water. J Am Chem Soc 59:775ā€“779

    CASĀ  Google ScholarĀ 

  83. Apelblat A, Manzurola E (1987) Solubility of oxalic, malonic, succinic, adipic, maleic, malic, citric, and tartaric acids in water from 278.15Ā K to 338.15Ā K. J Chem Thermodyn 19:317ā€“320

    CASĀ  Google ScholarĀ 

  84. Yang H, Wang J (2011) Solubilities of 3-carboxy-3-hydroxypentanedioic acid in ethanol, butan-1-ol, water, acetone, and methylbenzene. J Chem Eng Data 56:1449ā€“1451

    CASĀ  Google ScholarĀ 

  85. Daneshfar A, Baghlami M, Sarabi RS, Sahraei R, Abassi A, Kariyan H, Khezeli T (2012) Solubility of citric, malonic, and malic acids in different solvents from 303.2ā€“333.2Ā K. Fluid Phase Equilib 313:11ā€“15

    Google ScholarĀ 

  86. Oliveira MLN, Malagoni RA, Moilton JRF (2013) Solubility of citric acid in water, ethanol, n-propanol and in mixtures of methanol + water. Fluid Phase Equil 352:110ā€“113

    CASĀ  Google ScholarĀ 

  87. Barra J, Lescure F, Doelker E, Bustamante P (1997) The expanded Hansen approach to solubility parameters. Paracetamol and citric acid in individual solvents. J Pharm Pharmacol 49:644ā€“651

    CASĀ  Google ScholarĀ 

  88. Williamson AT (1944) The exact calculation of heats of solution from solubility data. Trans Faraday Soc 40:421ā€“436

    CASĀ  Google ScholarĀ 

  89. Levien BJ (1955) A physicochemical study of aqueous citric acid solutions. J Phys Chem 59:640ā€“644

    CASĀ  Google ScholarĀ 

  90. Apelblat A (1986) Enthalpy of solution of oxalic, succinic, adipic, malic, tartaric, and citric acids, oxalic acid dihydrate and citric acid monohydrate in water at 298.15Ā K. J Chem Thermodyn 18:351ā€“357

    CASĀ  Google ScholarĀ 

  91. Dobrogowska C, Hepler LG, Apelblat A (1990) The enthalpies of dilution of aqueous organic acids: oxalic acid and citric acid at 298.15Ā K. Chem Thermodyn 22:167ā€“172

    CASĀ  Google ScholarĀ 

  92. Williams RR, Soffie RD, Carter RJ (2003) Thermal properties of citric acid solutions. Internal Report, 11 March 1953. Personal communication from the Biochemical Division, Gadot Petrochemical Industries Ltd., Haifa, Israel

    Google ScholarĀ 

  93. Apelblat A, Dov M, Wisniak J, Zabicky J (1995) The vapour pressure of water over saturated aqueous solutions of malic, tartaric, and citric acids, at temperatures from 288ā€“323Ā K. J Chem Thermodyn 27:35ā€“41

    CASĀ  Google ScholarĀ 

  94. Manzurola E, Apelblat A (2003) Vapour pressure of water over saturated solutions of tartaric acid, sodium hydrogen tartrate, sodium tartrate, potassium tartrate, calcium tartrate, barium tartrate, citric acid, disodium hydrogen citrate, sodium citrate, and potassium citrate at temperatures from 277Ā K to 317Ā K. J Chem Thermodyn 35:251ā€“260

    CASĀ  Google ScholarĀ 

  95. Sadler GD, Roberts J, Cornell J (1988) Determination of oxygen solubility in liquid foods using a dissolved oxygen electrode. J Food Sci 53:1493ā€“1496

    CASĀ  Google ScholarĀ 

  96. Clark DS, Lentz CP (1961) Submerged citric acid fermentation of sugar beet molasses: effect of pressure and recirculation of oxygen. Can J Microbiol 7:447ā€“453

    CASĀ  Google ScholarĀ 

  97. Kristiansen B, Sinclair CG (1978) Production of citric acid in batch culture. Biotechnol Bioeng 20:1711ā€“1722

    CASĀ  Google ScholarĀ 

  98. Briffaud J, Engasser M (1979) Citric acid production from glucose. II. Growth and excretion kinetics in a trickle-flow fermentor. Biotechnol Bioeng 21:2093ā€“2111

    CASĀ  Google ScholarĀ 

  99. Kubicek CP, Zehentgruber O, El-Kalak H, Rƶhr M (1980) Regulation of citric acid production by oxygen: effect of dissolved oxygen tension on adenylate levels respiration in Aspergillus niger. Eur J Appl Microbiol 9:101ā€“115

    CASĀ  Google ScholarĀ 

  100. Dawson AW, Maddox IS, Boag IF, Brooks JD (1988) Application of fed-batch culture to citric acid production by Aspergillus niger: the effects of dilution rate and dissolved oxygen tension. Biotechnol Bioeng 32:220ā€“226

    CASĀ  Google ScholarĀ 

  101. Okoshi H, Sato S, Mukataka S, Takahashi J (1987) Citric acid production by Candida tropicalis under high dissolved oxygen concentration. Agric Biol Chem 51:257ā€“258

    CASĀ  Google ScholarĀ 

  102. Rane KD, Sims KA (1994) Oxygen uptake and citric acid production by Candida lipolytica. Biotechnol Bioeng 43:131ā€“137

    CASĀ  Google ScholarĀ 

  103. Ferrentino G, Barletta D, Donsi F, Ferrari G, Poletto M (2010) Experimental measurements and thermodynamic modeling of CO2 solubilities at high pressure in model apple juices. Ind Eng Chem Res 49:2992ā€“3000

    CASĀ  Google ScholarĀ 

  104. McIntyre M, McNeil B (1997) Dissolved carbon dioxide effects on morphology, growth, and citrate production in Aspergillus niger A60. Enzyme Microbiol Technol 20:135ā€“142

    CASĀ  Google ScholarĀ 

  105. Dawson MW, Maddox IS, Brooks JD (1986) Effect of interruptions of the air supply on citric acid production by Aspergillus niger. Enzyme Microbiol Technol 8:37ā€“40

    CASĀ  Google ScholarĀ 

  106. Sada E, Kito S, Ito Y (1974) Solubilities of gases in aqueous solutions of weak acids. J Chem Eng Jpn 7:57ā€“59

    CASĀ  Google ScholarĀ 

  107. Wilhelm E, Battino R, Wilcock RJ (1977) Low-pressure solubility of gases in liquid water. Chem Rev 77:219ā€“262

    CASĀ  Google ScholarĀ 

  108. Battino R, Seybold PG (2011) The O2/N2 ratio gas solubility mystery. J Chem Eng Data 56:5036ā€“5044

    CASĀ  Google ScholarĀ 

  109. Tromans D (2000) Modeling oxygen solubility in water and electrolyte solutions. Ind Eng Chem Res 39:805ā€“815

    CASĀ  Google ScholarĀ 

  110. Chapoy A, Mohammadi AH, Charenton A, Tohidi B, Richon D (2004) Measurement and modeling of gas solubility and literature review of the properties for the carbon dioxideā€“water system. Ind Eng Chem Res 43:1794ā€“1802

    CASĀ  Google ScholarĀ 

  111. Manzurola E, Apelblat A (1985) Apparent molar volumes of citric, tartaric, malic, succinic, maleic and acetic acids in water at 298.15Ā K. J Chem Thermodyn 17:579ā€“584

    CASĀ  Google ScholarĀ 

  112. Apelblat A, Manzurola E (1990) Apparent molar volumes of organic acids and salts in water at 298.15Ā K. Fluid Phase Equil 60:157ā€“171

    CASĀ  Google ScholarĀ 

  113. Sijpkes AH, Van Rossum P, Raad JS, Somsen GJ (1989) Heat capacities and volumes of some polybasic carboxylic acids in water at 298.15Ā K. J Chem Thermodyn 21:1061ā€“1067

    CASĀ  Google ScholarĀ 

  114. Patterson BA, Wooley EM (2001) Thermodynamics of proton dissociation from aqueous citric acid: apparent molar volumes and apparent heat capacities of citric acid and its sodium salts at the pressure of 0 35Ā MPa and at temperatures from 278.15Ā K to 393.15Ā K. J Chem Thermodyn 33:1735ā€“1764

    CASĀ  Google ScholarĀ 

  115. Parmar ML, Avasthi RK, Guleria MK (2004) A study of partial molar volumes of citric acid and tartaric acid in water and binary aqueous mixtures of ethanol at various temperatures. J Chem Pharm Res 116:33ā€“38

    CASĀ  Google ScholarĀ 

  116. Tadkalkar A, Pawar P, Bichile GK (2011) Studies of acoustic and thermodynamic properties of citric acid in double distilled water. J Chem Pharm Res 3:165ā€“168

    CASĀ  Google ScholarĀ 

  117. Kharat SJ (2008) Density, viscosity, conductivity, ultrasonic velocity, and refractive index studies of aqueous solutions of citric acid at different temperatures. Int J Appl Chem (IJAC) 4:223ā€“235

    Google ScholarĀ 

  118. Maffia MC (2005) Propriedades de equilĆ­brio de sistemas aquoso com Ć”cidos policarboxĆ­licos aƧĆŗcares e sucos de frutas. PhD thesis, Universidade Estudual Campinas, Campinas, Brasil

    Google ScholarĀ 

  119. Darros-Barbosa R, Balaban MO, Teixeira AA (2003) Temperature and concentration dependence of density of model liquid foods. Int J Food Prop 6:1ā€“20

    Google ScholarĀ 

  120. Millero FJ (1979) Effects of pressure and temperature on activity coefficients. In: Pytkowicz RM (ed) Activity Coefficients in Electrolyte Solutions, volĀ II. CRC Inc., Boca Raton, ppĀ 63ā€“151

    Google ScholarĀ 

  121. King EJ (1963) Volume changes for ionization of formic, acetic, and n-butyric acids and the glycinium ion in aqueous solution at 25ā€‰Ā°C. J Phys Chem 73:1220ā€“1232

    Google ScholarĀ 

  122. Apelblat A, Manzurola E (1999) Volumetric properties of water, and solutions of sodium chloride and potassium chloride at temperatures Tā€‰=ā€‰277 15Ā K to Tā€‰=ā€‰343 15Ā K at molalities of (0 1, 0 5, and 1 0)Ā molĀ kgāˆ’1. J Chem Thermodyn 31:869ā€“893

    CASĀ  Google ScholarĀ 

  123. Apelblat A (2001) Volumetric properties of aqueous solutions of lithium chloride at temperatures from 278.15Ā K to 338.15Ā K at molalities (0 1, 0 5, and 1 0)Ā molĀ kgāˆ’1. J Chem Thermodyn 33:1133ā€“1155

    CASĀ  Google ScholarĀ 

  124. Hepler LG (1969) Thermal expansion and structure in water and aqueous solutions. Can J Chem 47:4613ā€“4616

    CASĀ  Google ScholarĀ 

  125. Neal JL, Goring AAL (1970) Volume-temperature relationships of hydrophobic and hydrophilic nonelectrolytes in water. J Phys Chem 74:658ā€“664

    CASĀ  Google ScholarĀ 

  126. Vaslow F (1966) The apparent molal volumes of the alkali metal chlorides in aqueous solution and evidence for salt-induced transition structure. J Phys Chem 70:2286ā€“2294

    CASĀ  Google ScholarĀ 

  127. Young TF, Smith MB (1954) Thermodynamic properties of mixtures of electrolytes in aqueous solutions. J Phys Chem 58:716ā€“724

    CASĀ  Google ScholarĀ 

  128. Miyahara Y (1952) Adiabatic compressibility of aqueous solution. I. Dicarboxylic and oxycarboxylic acid. Bull Chem Soc Jpn 25:326ā€“328

    CASĀ  Google ScholarĀ 

  129. Burakowski A (2008) Acoustic investigation of hydration of nonelectrolytes. PhD thesis, University of Wroclaw, Poland

    Google ScholarĀ 

  130. Burakowski A, Gliński J (2012) Hydration numbers of nonelectrolytes from acoustic methods. Chem Rev 112:2059ā€“2081

    CASĀ  Google ScholarĀ 

  131. Parke SA, Birch GG, Dijk R (1999) Some taste molecules and their solution properties. Chem Senses 24:271ā€“278

    CASĀ  Google ScholarĀ 

  132. Bhat JI, Manjunatha MN, Varapresad NSS (2001) Acoustic behaviour of citric acid in aqueous and partial aqueous media. Indian J Pure Appl Phys 33:1735ā€“1764

    Google ScholarĀ 

  133. Apelblat A, Korin E, Manzurola E (2013) Thermodynamic properties of aqueous solutions with citrate ions. Compressibility studies in aqueous solutions of citric acid. J Chem Thermodyn 64:14ā€“21

    CASĀ  Google ScholarĀ 

  134. Marczak W (1997) Water as a standard in the measurements of speed of sound in liquids. J Acoust Soc Am 102:2776ā€“2779

    Google ScholarĀ 

  135. Gromov MA (1985) Thermal characteristics of solutions of food acids. Klebopekarnaya i Konditerskaya Promyshlennost 4:36ā€“38

    Google ScholarĀ 

  136. Rao MR (1940) Relation between velocity of sound in liquids and molecule volume. Indian J Phys 14:109ā€“116

    CASĀ  Google ScholarĀ 

  137. Rao MR (1941) The adiabatic compressibility of liquids. J Chem Phys 14:699

    Google ScholarĀ 

  138. Wada Y (1949) On the relation between compressibility and molar volume of organic liquids. J Phys Soc Jpn 4:280ā€“283

    CASĀ  Google ScholarĀ 

  139. Mathur SS, Gupta PN, Sinha SC (1971) Theorethical derivation of Wadaā€™s and Raoā€™s relations. J Phys A Gen Phys 4:434ā€“436

    Google ScholarĀ 

  140. Nikam PS, Hasan M (1988) Ultrasonic velocity and adiabatic compressibility of monochloroacetic acid in aqueous ethanol at various temperatures. J Chem Eng Data 33:165ā€“169

    CASĀ  Google ScholarĀ 

  141. Lo Surdo A, Shin C, Millero FJ (1978) The apparent molar volume and adiabatic compressibility of some organic solutes. J Chem Eng Data 23:197ā€“201

    CASĀ  Google ScholarĀ 

  142. Marcus Y (2013) Internal pressure of liquids and solutions. Chem Rev 113:6531ā€“6551

    Google ScholarĀ 

  143. Passynski A (1940) Compressibility and salvation of solution of electrolytes. Acta Physicochim USSR 8:358ā€“418

    Google ScholarĀ 

  144. Peng C, Chow AHL, Chan CK (2001) Hygroscopic study of glucose, citric acid, and sorbitol using an electrodynamic balance. Comparison with UNIFAC predictions. Aerosol Sci Technol 35:753ā€“758

    CASĀ  Google ScholarĀ 

  145. Velezmoro CE, Meirelles AJA (1998) Water activity in solutions containing organic acids. Dry Technol 16:1789ā€“1805

    CASĀ  Google ScholarĀ 

  146. Velezmoro CE (1999) Modelagem e prediĆ§Ć£o da atividade de Ć£qua em fluidos alimenticios. PhD thesis, Universidade Estudual Campinas Campinas, Brasil

    Google ScholarĀ 

  147. Maffia MC, Meirelles AJA (2001) Water activity and pH in aqueous polycarboxylic systems. J Chem Eng Data 46:582ā€“587

    CASĀ  Google ScholarĀ 

  148. Maffia MC (2005) Propriedades de equilĆ­brio de sistemas aquoso com Ć”cidos policarboxĆ­licos aƧĆŗcares e sucos de frutas. PhD thesis, Universidade Estudual Campinas, Campinas, Brasil

    Google ScholarĀ 

  149. Zardini AA, Sjogren S, Marcolli C, Krieger UK, Gysel M, Weingartner E, Baltensperger U, Peter T (2008) A combined particle trap/HTDMA hygroscopicity study of mixed inorganic/organic aerosol particles. Atmos Chem Phys 8:5589ā€“5601

    Google ScholarĀ 

  150. Chirife J, Fontan CF (1980) Prediction of water activity of aqueous solutions in connection with intermediate moisture foods: experimental investigation of the aw lowering behavior of sodium lactate and some related compounds. J Food Sci 45:802ā€“804

    CASĀ  Google ScholarĀ 

  151. Choi MY, Chan CK (2002) The effects of organic species on the hygroscopic behaviors of inorganic aerosols. Environ Sci Technol 38:2422ā€“2428

    Google ScholarĀ 

  152. Schunk A, Maurer G (2004) Activity of water in aqueous solutions of sodium citrate and in aqueous solutions of (inorganic salt and citric acid) at 298.15Ā K. J Chem Eng Data 49:944ā€“949

    CASĀ  Google ScholarĀ 

  153. Apelblat A (1993) Activity and osmotic coefficients in electrolyte solutions at elevated temperatures. Am Int Chem Eng J 39:918ā€“923

    CASĀ  Google ScholarĀ 

  154. Kasprzycka-Guttman T, Semeniuk B, Wilczura H, Mislinski A (1991) Phase equilibrium data for the citric acidā€“waterā€“cyclohexanone system at 25ā€‰Ā°C. Hung Ind Chem 19:159ā€“162

    CASĀ  Google ScholarĀ 

  155. Richards TW, Mair BJ (1929) A study of the thermochemical behavior of weak electrolytes. J Am Chem Soc 51:740ā€“748

    CASĀ  Google ScholarĀ 

  156. Rossini FD (1930) Heat capacities in some aqueous solutions. J Res Natl Bur Stand 4:313ā€“327

    CASĀ  Google ScholarĀ 

  157. Manzurola E (1984) Mixed metal complexes. PhD thesis, Ben-Gurion University of the Negev, Beer Sheva

    Google ScholarĀ 

  158. Massol MG (1892) Sur lā€™acide citrique ou oxycarballylique. Comp Rend Acad Sci 114:593ā€“595

    Google ScholarĀ 

  159. Snethlage HCS (1952) On the heat of electrolytic dissociation of acetic acid and of the first H-ion of citric acid in an aqueous solution. Recueil 71:699ā€“704

    Google ScholarĀ 

  160. Blair GT, Zienty ME (1979) Citric Acid: Properties and Reactions. Miles Laboratories, Inc., Elkhart

    Google ScholarĀ 

  161. Kochergina LA, Vasilā€™ev VP, Krutov DV, Krutova ON (2008) The influence of temperature on the heat effects of acidā€“base interactions in aqueous solutions of citric acid. Russ J Phys Chem A 4:565ā€“570

    Google ScholarĀ 

  162. Bald A, Barczyńska J (1993) Enthalpies of solution of citric acid in water at 298.15Ā K. The effect of association processes on thermochemical properties of electrolyte solutions. Thermochim Acta 222:33ā€“43

    CASĀ  Google ScholarĀ 

  163. Kortschak HP (1939) Citrates and the viscosity of pectin solutions. J Am Chem Soc 61:681ā€“683

    CASĀ  Google ScholarĀ 

  164. Averbukh DA, Metkin VP, Maksimeniuk MN (1973) Viscosity of citric acid solutions. Khlebopekarnaya i Konditerskaya Promyshlennost 17:21ā€“23

    Google ScholarĀ 

  165. Taimni JK (1929) The viscosity of supersaturated solutions. Part II. J Phys Chem 33:52ā€“68

    CASĀ  Google ScholarĀ 

  166. Palmer ML, Kushwaha K (1990) Viscosities of some organic acids in water and sucroseā€“water mixtures. Proc Natl Acad Sci India 60A:363ā€“366

    Google ScholarĀ 

  167. Muller GTA, Stokes RH (1957) The mobility of the undissociated citric acid molecule in aqueous solution. Trans Faraday Soc 53:642ā€“645

    CASĀ  Google ScholarĀ 

  168. Southard MZ, Dias LJ, Himmelstein KJ, Stella VJ (1991) Experimental determination of diffusion coefficients in dilute aqueous solution using the method of hydrodynamic stability. Pharm Res 8:1489ā€“1494

    CASĀ  Google ScholarĀ 

  169. Alkhaldi MH, Sarma HK, Nasr El-Din HA (2010) Diffusivity of citric acid during its reaction with calcite. J Can Petrol Technol 49:43ā€“52

    CASĀ  Google ScholarĀ 

  170. Liu JG, Luo GS, Pan S, Wang JD (2004) Diffusion coefficients of carboxylic acids in mixed solvents of water and 1-butanol. Chem Eng Process 43:43ā€“47

    Google ScholarĀ 

  171. WĆ³dzki R, Nowaczyk J (1999) Membrane transport of organics. II Permeation of some organic acids through strongly basic polymer membrane. J Appl Polym Sci 71:2179ā€“2190

    Google ScholarĀ 

  172. Gharagheizi F (2012) Determination of diffusion coefficient of organic compounds in water using a simple molecular-based method. Ind Eng Chem Res 51:2797ā€“2803

    CASĀ  Google ScholarĀ 

  173. Waymann FM, Mattey M (2000) Simple diffusion is the primary mechanism for glucose uptake during the production phase of the Aspergillus niger citric acid process. Biotechnol Bioeng 67:451ā€“456

    Google ScholarĀ 

  174. Lombardi AM, Zaritzky NE (1996) Simultaneous diffusion of citric acid and ascorbic acid in prepeeled potatoes. J Food Proc Eng 19:27ā€“48

    Google ScholarĀ 

  175. Gekas V, Oste R, Lamberg I (1993) Diffusion in heated potato tissues. J Food Sci 58:827ā€“831

    CASĀ  Google ScholarĀ 

  176. Othmer DF, Thakar MS (1953) Correlating diffusion coefficients in liquids. Ind Eng Chem 45:589ā€“593

    CASĀ  Google ScholarĀ 

  177. Wilke CR, Chang P (1955) Correlation of diffusion coefficients in dilute solutions. Am Int Chem Eng J 1:264ā€“270

    CASĀ  Google ScholarĀ 

  178. Hayduk W, Laudie H (1974) Predictions of diffusion coefficients for nonelectrolytes in dilute aqueous solutions. Am Int Chem Eng J 20:611ā€“615

    CASĀ  Google ScholarĀ 

  179. Ramires MLV, Nieto de Castro C.A, Nagasaka Y, Nagashima A, Assael MJ, Wakeham WA (1995) Standard reference data for thermal conductivity of water. J Phys Chem Ref Data 24:1377ā€“1381

    CASĀ  Google ScholarĀ 

  180. Walden P (1892) Affinity of organic acids. II Tricarboxylic acids. Z Physik Chemie 10:563ā€“579

    Google ScholarĀ 

  181. Walker JVII (1892) The dissociation of organic acids. J Chem Soc 61:696ā€“717

    CASĀ  Google ScholarĀ 

  182. Jones HC (1912) The electrical conductivities, dissociation, and temperature coefficients of conductivity from 0 to 65ā€‰Ā° of aqueous solutions of a number of salts and organic acids. Carnegie Institution of Washington, Publ. No 170

    Google ScholarĀ 

  183. Dippy JFJ (1939) The dissociation constants of monocarboxylic acids; their measurements and their significance in theoretical organic chemistry. Chem Rev 25:151ā€“211

    CASĀ  Google ScholarĀ 

  184. Apelblat A (2002) Dissociation constants and limiting conductances of organic acids in water. J Mol Liq 95:99ā€“145

    CASĀ  Google ScholarĀ 

  185. Apelblat A, Barthel J (1991) Conductance studies on aqueous citric acid. Z Naturforsch 46a:131ā€“140

    Google ScholarĀ 

  186. Shamin M, Eng SC (1982) Transference numbers of aqueous citric acid and the limiting conductance of the dihydrogen citrate ion at 25ā€‰Ā°C. J Solut Chem 11:309ā€“314

    Google ScholarĀ 

  187. Milazzo G (1963) Electrochemistry. Elsevier, Amsterdam, pĀ 61

    Google ScholarĀ 

  188. Bhat JI, Manjunatha MN (2010) Conductometric studies on sovation behaviour of citric acid in water + methanol and water + ethanol mixtures at different temperatures. Indian J Chem Technol 17:462ā€“467

    CASĀ  Google ScholarĀ 

  189. Bhat JI, Manjunatha MN (2011) Studies on the effect of dielectric constant on the salvation behaviour of citric acid as a function of temperature. Arch Appl Sci Res 3:362ā€“380

    Google ScholarĀ 

  190. Davies CW, Hoyle BE (1953) The interaction of calcium ions with some phosphate and citrate buffers. J Chem Soc 4134ā€“4136

    Google ScholarĀ 

  191. Davies CW, Hoyle BE (1955) The interaction of calcium ions with some citrate buffers: a correction. J Chem Soc 1038

    Google ScholarĀ 

  192. Wiley WJXCIV (1930) The dissociation of calcium citrate. Biochem J 24:856ā€“859

    CASĀ  Google ScholarĀ 

  193. Huyskens PL, Lambeau YO (1978) Specific interactions of citric acid with ions in acetonitrile. J Phys Chem 82:1886ā€“1892

    CASĀ  Google ScholarĀ 

  194. Huyskens PL, Lambeau YO (1978) Ionic conductances and Walden products of anions mono- and dissolvated by citric acid in acetonitrile. J Phys Chem 82:1892ā€“1897

    CASĀ  Google ScholarĀ 

  195. Apelblat A, Neueder R, Barthel J (2006) Electrolyte data collection. Electrolytic conductivities, ionic conductivities and dissociation constants of aqueous solutions of organic dibasic and tribasic acids. Chemistry Data Series, volĀ XII, Part 4c. Dechema, Frankfurt

    Google ScholarĀ 

  196. Lee WH, Wheaton RJ (1978) Conductance of symmetrical, unsymmetrical and mixed electrolytes. Part 2. Hydrodynamic terms and complete conductance equation. J Chem Soc Faraday Trans 74:1456ā€“1482

    CASĀ  Google ScholarĀ 

  197. Barthel JMG, Krienke H, Kunz W (1998) Physical Chemistry of Electrolyte Solutions. Modern Aspects. Springer, Darmstadt

    Google ScholarĀ 

  198. KortĆ¼m G (1963) Electrochemistry, Theoretical Principles and Practical Applications. Elsevier, Amsterdam

    Google ScholarĀ 

  199. Traube J (1885) Capillary constants of certain aqueous and alcoholic solutions. J Prakt Chemie 31:177ā€“219

    Google ScholarĀ 

  200. Linebarger CE (1898) The surface-tension of aqueous solutions of oxalic, tartaric, and citric acids. J Am Chem Soc 20:128ā€“130

    Google ScholarĀ 

  201. Livingston J, Morgan R, McKirahan WW (1913) The weight of a falling drop and the laws of Tate XIV the drop weights of aqueous solutions of the salts of organic acids. J Am Chem Soc 35:1759ā€“1767

    Google ScholarĀ 

  202. Averbukh DA, Metkin VP, Petrov BM (1972) Determination of the surface tension of citric acid and filtrate solutions. Khlebopekarnaya i Konditerskaya Promyshlennost 16:20ā€“22

    Google ScholarĀ 

  203. Patel NK, Mehta MS, Franco J (1974) Study of surface tension of binary solutions of organic acids in aqueous media. Labdev J Sci Tech 12A:89ā€“90

    Google ScholarĀ 

  204. Sarafraz MM (2012) Nucleate pool boiling of aqueous solution of citric acid on a smoothed horizontal cylinder. Heat Mass Transf 48:611ā€“619

    CASĀ  Google ScholarĀ 

  205. Mahinddin S, Minofar B, Borah JM, Das MR, Jungwith P (2008) Properties of oxalic, citric, succinic, and maleic acids for the aqueous solution/vapour interface: surface tension measurements and molecular dynamics simulations. Chem Phys Lett 462:217ā€“221

    Google ScholarĀ 

  206. Vargaftik NB, Volkov BN, Voljak LD (1983) International tables of the surface tension of water. J Phys Chem Ref Data 12:813ā€“820

    Google ScholarĀ 

  207. Oliveira MLN (2009) Estudo experimental du solubilidades de alguns acidos em misturas hidro-alcoolicas. PhD thesis, Universidade federal de Uberlandia, Uberlandia, MG, Brasil

    Google ScholarĀ 

  208. Kolosovskii NA, Kulikov FS (1934) Partition of tartaric and citric acids between water and isoamyl alcohol. Ukrain Khim Zhurn 9:143ā€“147

    CASĀ  Google ScholarĀ 

  209. Kolosovskii NA, Kulikov FS, Bekturov A (1935) Distribution of saturated organic acids between two liquid phases. Bull Soc Chim Fr 2:460ā€“479

    CASĀ  Google ScholarĀ 

  210. Gordon KF (1953) Distribution coefficients for 2-methyl-1-propanolā€“water and 1-pentanolā€“water systems. Ind Eng Chem 45:1813ā€“1815

    CASĀ  Google ScholarĀ 

  211. Apelblat A, Manzurola E (1988) Extraction of citric acid by n-octanol and n-hexanol. Ber Bunsenges Phys Chem 92:793ā€“796

    CASĀ  Google ScholarĀ 

  212. Apelblat A, Glazer S, Kost A, Manzurola E (1990) Liquidā€“liquid equilibria in ternary systems with citric acid, tartaric and malic acids and aliphatic alcohols. Ber Bunsenges Phys Chem 94:1145ā€“1149

    CASĀ  Google ScholarĀ 

  213. Grinberg A, Povimonski D, Apelblat A (1991) Liquid-liquid equilibrium in the ternary system: citric acidā€“2-butanolā€“water at 298.15Ā K. Solv Extr Ion Exch 9:127ā€“135

    CASĀ  Google ScholarĀ 

  214. Sergievskii VV (1989) Hydration in extraction of citric acid with alcohols. Izvest Visshikh Uchebn Zaved Khim i Khim Technol 32:79ā€“81

    CASĀ  Google ScholarĀ 

  215. Sergievskii VV, Dzhakupova ZE (1993) Partition of carboxylic acids in relation to their hydration and molecular association. Zhurn Obshchei Khim 63:740ā€“744

    CASĀ  Google ScholarĀ 

  216. Tvetkova ZN, Povitskii NS (1960) Extraction of citric acid by tributyl phosphate. Zhurn Neorg Khim 5:2827ā€“2831

    Google ScholarĀ 

  217. Apelblat A (1983) Correlation between activity and solubility of water in some aliphatic alcohols. Ber Bunsenges Phys Chem 87:2ā€“5

    CASĀ  Google ScholarĀ 

  218. Apelblat A (1990) Evaluation of the excess Gibbs energy of mixing in of binary alcohol-water mixtures from the liquidā€“liquid partition data in electrolyteā€“waterā€“alcohol systems. Ber Bunsenges Phys Chem 94:1128ā€“1134

    CASĀ  Google ScholarĀ 

  219. Apelblat A, Manzurola E (1987) Thermodynamic analysis of partition data in the CaCl2ā€“H2Oā€“n-octanol and CaCl2ā€“H2Oā€“n-butanol systems at 298.15Ā K. Ber Bunsenges Phys Chem 91:1387ā€“1394

    CASĀ  Google ScholarĀ 

  220. Boey SC, Garcia del Cerro MC, Pyle DL (1987) Extraction of citric acid by liquid membrane extraction. Chem Eng Res Dev 65:218ā€“223

    CASĀ  Google ScholarĀ 

  221. Marcus Y, Kertes AS (1969) Ion-Exchange and Solvent Extraction of Metal Complexes. Wiley, London

    Google ScholarĀ 

  222. Pyatniskii IV, Tabenskaya TV, Makarchuk TL (1973) Solvent extraction of citric acid and a citrate complex of iron with tri-n-octylamine. Zhurn Anal Khim 28:550ā€“554

    Google ScholarĀ 

  223. Vaňura P, Kuča L (1976) Extraction of citric acid by the toluene solutions of trilaurylamine. Coll Chechoslov Chem Comm 41:2857ā€“2877

    Google ScholarĀ 

  224. Wennersten R (1983) The extraction of citric acid from fermentation broth using a solution of a tertiary amine. J Chem Tech Biotechnol 33B:85ā€“94

    CASĀ  Google ScholarĀ 

  225. Alter JE, Blumberg R (1987) Extraction of citric acid. U.S. Pat. No 4,251,671

    Google ScholarĀ 

  226. Bauer U, Marr R, RĆ¼ckl W, Siebenhofer M (1988) Extraction of citric acid from aqueous solutions. Chem Biochem Eng Quart 2:230ā€“232

    CASĀ  Google ScholarĀ 

  227. Bauer U, Marr R, RĆ¼ckl W, Siebenhofer M (1989) Reactive extraction of citric acid from an aqueous fermentation broth. Ber Bunsenges Phys Chem 93:980ā€“984

    CASĀ  Google ScholarĀ 

  228. Baniel AM, Gonen D (1991) Production of citric acid. U.S. Pat. No 4,994,609

    Google ScholarĀ 

  229. Bizek V, HovĆ”Äek J, KouÅ”ovĆ” M, Heyberger A, ProchĆ”zka J (1992) Mathematical model of extraction of citric acid with amine. Chem Eng Sci 47:1433ā€“1440

    CASĀ  Google ScholarĀ 

  230. Bizek V, HovĆ”Äek J, Řeřicha R, KouÅ”ovĆ” M (1992) Amine extraction of hydroxycarboxylic acids. I. Extraction of citric acid with 1-octanol/n-heptane solutions of trialkylamine. Ind Eng Chem Res 31:1554ā€“1562

    CASĀ  Google ScholarĀ 

  231. Bizek V, HovĆ”Äek J, KouÅ”ovĆ” M (1993) Amine extraction of citric acid: effect of diluent. Chem Eng Sci 48:1447ā€“1457

    CASĀ  Google ScholarĀ 

  232. ProchĆ”zka J, Heyberger A, Bizek V, KouÅ”ovĆ” M, VolaufovĆ” E (1994) Amine extraction of hydrocarboxylic acids. 2. Comparison of equilibria for lactic, malic, and citric acid. Ind Eng Chem 33:1565ā€“1573

    Google ScholarĀ 

  233. Juang RS, Huang WT (1996) Catalytic role of a water immiscible organic acid on amine extraction of citric acid from aqueous solutions. Ind Eng Chem Res 35:546ā€“552

    CASĀ  Google ScholarĀ 

  234. Baniel AM, Eyal AM (1997) Citric acid extraction. European Pat. No EP 0613878B1

    Google ScholarĀ 

  235. Juang RS, Huang RH, Wu RT (1997) Separation of citric and lactic acids in aqueous solutions by solvent extraction and liquid membrane process. J Membr Sci 136:89ā€“99

    CASĀ  Google ScholarĀ 

  236. ProchĆ”zka J, Heyberger A, VolaufovĆ” E (1997) Amine extraction of hydrocarboxylic acids. 3. Effect of modifiers on citric acid extraction. Ind Eng Chem Res 36:2799ā€“2807

    Google ScholarĀ 

  237. Pazouki M, Panda T (1998) Recovery of citric acid - a review. Bioprocess Eng 19:435ā€“439

    CASĀ  Google ScholarĀ 

  238. Poposka FA, Nikolovski K, Tomovska R (1997) The extraction of citric acid with isodecanol/n-paraffins solutions of trioctylamine:equilibrium and kinetics. Bull Chem Tech Mecedonia 16:105ā€“116

    CASĀ  Google ScholarĀ 

  239. Poposka FA, Nikolovski K, Tomovska R (1998) Kinetics, mechanism and mathematical modeling of extraction of citric acid with isodecanol/n-paraffins solutions of trioctylamine. Chem Eng Sci 53:3227ā€“3237

    CASĀ  Google ScholarĀ 

  240. Heyberger A, ProchĆ”zka J, VolaufovĆ” E (1998) Extraction of citric acid with tertiary amine-third phase formation. Chem Eng Sci 53:515ā€“521

    CASĀ  Google ScholarĀ 

  241. Kirsch T, ZiegenfuƟ H, Maurer G (1997) Distribution of citric, acetic and oxalic acids between water and organic solutions of tri-n-octylamine. Fluid Phase Equil 129:235ā€“266

    CASĀ  Google ScholarĀ 

  242. Kirsch T, Maurer G (1998) Distribution of binary mixtures of citric, acetic and oxalic acids between water and organic solutions of tri-n-octylamine. Part II. Organic solvent methylisobutylketone. Fluid Phase Equil 142:215ā€“230

    CASĀ  Google ScholarĀ 

  243. Kirsch T, Maurer G (1998) On the influence of some inorganic salts on the partitioning citric acid between water and organic solutions of tri-n-octylamine. Part III: organic solvent chloroform. Fluid Phase Equil 146:297ā€“313

    CASĀ  Google ScholarĀ 

  244. Bressler Y, Broun S (1999) Separation mechanisms of citric and itaconic acids by water-immiscible amines. J Chem Technol Biotechnol 74:891ā€“896

    CASĀ  Google ScholarĀ 

  245. Dinculescu D, Guzin-Stoica A, Dobre T, Floarea O (2000) Experimental investigation of citric acid reactive extraction with solvent recycling. Bioprocess Eng 22:529ā€“532

    CASĀ  Google ScholarĀ 

  246. ƌnci I (2002) Partition coefficients of citric acid between aqueous solutions and long chain amines dissolved in various solvents. Asian J Chem 14:1214ā€“1220

    Google ScholarĀ 

  247. Schunk A, Menert A, Maurer G (2004) On the influence of some inorganic salts on the partitioning citric acid between water and organic solutions of tri-n-octylamine. Part I: methyl isobutylketone as organic solvent. Fluid Phase Equil 224:55ā€“72

    CASĀ  Google ScholarĀ 

  248. Schunk A, Maurer G (2005) On the influence of some inorganic salts on the partitioning citric acid between water and organic solutions of tri-n-octylamine. Part II: toluene as organic solvent. Ind Eng Chem Res 44:8837ā€“8851

    CASĀ  Google ScholarĀ 

  249. Maurer G (2006) Modeling the liquid-liquid equilibrium for the recovery of carboxylic acids from aqueous solutions. Fluid Phase Equil 241:86ā€“95

    CASĀ  Google ScholarĀ 

  250. Uslu H, ƌnci I, Kirbaşlar SI, Aydm A (2007) Extraction of citric acid from aqueous solutions by means of a long chain aliphatic quaternary amine/diluent system. J Chem Eng Data 52:1603ā€“1608

    CASĀ  Google ScholarĀ 

  251. Keshav A, Norga P, Wasewarm KI (2012) Reactive extraction of citric acid using tri-n-octylamine in nontoxic natural diluents: part 1. Equilibrium studies from aqueous solutions. Appl Biochem Biotechnol 167:197ā€“213

    CASĀ  Google ScholarĀ 

  252. Raheya D, Keshav A (2013) Green chemistry for citric acid recovery from bioreactor: effect of temperature. Int J ChemTech Res 5:820ā€“823

    Google ScholarĀ 

  253. Marvel CS, Richards JC (1949) Separation of polybasic acids by fractional extraction. Anal Chem 21:1480ā€“1483

    CASĀ  Google ScholarĀ 

  254. Nikhade BP, Moulijn JA, Pangarkar VG (2004) Extraction of citric acid from aqueous solutions with Alamine 336: equilibrium and kinetics. J Chem Technol Biotechnol 79:1155ā€“1161

    CASĀ  Google ScholarĀ 

  255. Canari R, Eyal AM (2004) Temperature effect on the extraction of carboxylic acids by amine-based extraction. Ind Eng Chem Res 43:7608ā€“7617

    CASĀ  Google ScholarĀ 

  256. Bayazit SS, Uslu H, ƌnci I (2009) Comparative equilibrium studies for citric acid by Amberlite LA-2 or tridocylamine(TDA). J Chem Eng Data 54:1991ā€“1998

    CASĀ  Google ScholarĀ 

  257. Lintomen L, Pinto RTP, Batista E, Meirelles AJA, Maciel MRD (2000) Liquidā€“liquid equilibrium of the water + citric acid + 2-butanol + sodium chloride system at 298.15Ā K. J Chem Eng Data 45:1211ā€“1214

    CASĀ  Google ScholarĀ 

  258. Lintomen L, Pinto RTP, Batista E, Meirelles AJA, Maciel MRD (2001) Liquidā€“liquid equilibrium of the water + citric acid + short chain alcohol + tricaprylin system at 298.15Ā K. J Chem Eng Data 46:546ā€“550

    CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Apelblat .

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Apelblat, A. (2014). Properties of Citric Acid and Its Solutions. In: Citric Acid. Springer, Cham. https://doi.org/10.1007/978-3-319-11233-6_2

Download citation

Publish with us

Policies and ethics