Skip to main content

Energy Expression of the Chemical Bond Between Atoms in Hydrides and Oxides and Its Application to Materials Design

  • Chapter
  • First Online:
The DV-Xα Molecular-Orbital Calculation Method

Abstract

Using energy density analysis, total energy is partitioned into the atomic energy densities of constituent elements. The atomization energy of each element is then evaluated by subtracting the atomic energy density from the energy of the isolated neutral atom. This recent approach to the energy expression is reviewed of the chemical bond between atoms in hydrides and oxides. For various hydrides, the atomization energies, ΔE H for H atom and ΔE M for metal atom, are evaluated and the ΔE H vs. ΔE M diagram called atomization energy diagram is made. All the hydrides including complex hydrides and metal hydrides can be located on this diagram, although there are significant differences in the nature of the chemical bond among them. Also, for hydrocarbons, C m H n , the atomization energy for carbon, ΔE C , increases linearly with the ratio of carbon number to hydrogen number, m/n, while keeping ΔE H constant. It is no longer needed for us to give expression for the C-C bond to be either single, or double or triple bond in C m H n . For metal oxides, the atomization energies, ΔE M for metal atom and ΔE O for O atom, reflect the average structure as well as the local structure. As a result, their values change with the overall density of binary metal oxides. For perovskite-type oxides, the ΔE O value increases by the phase transition from cubic to tetragonal phase, regardless of the tilting-type or the <100> displacement-type transition. One of the applications of this approach is the quantitative evaluation for the catalytic activities of metal oxides (e.g., Nb2O5) on the dehydrogenation reaction of magnesium hydride (MgH2), MgH2 → Mg + H2. The atomization energy concept will provide us a new clue to materials design, for example, catalysts design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahtee A, Ahtee M, Glazer AM, Hewat AW (1976) Structure of orthorhombic SrZrO3 by neutron powder diffraction. Acta Cryst B32:3243–3246

    Article  CAS  Google Scholar 

  • Ahtee M, Glazer AM, Hewat AW (1978) High-temperature phases of SrZrO3. Acta Cryst B 34:752–758

    Article  Google Scholar 

  • Anders E, Koch R, Freunscht P (1993) Optimization and application of lithium parameters for PM3. J Comp Chem 14:1301–1312

    Article  CAS  Google Scholar 

  • Armaroli T, Busca G, Carlini C, Giuttari M, Galletti AMR, Sbrana G (2000) Acid sites characterization of niobium phosphate catalysts and their activity in fructose dehydration to 5-hydroxymethyl-2-furaldehyde. J Mol Catal A Chem 151:233–243

    Article  CAS  Google Scholar 

  • Barkhordarian G, Klassen T, Bormann R (2003) Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst. Scr Mater 49:213–217

    Article  CAS  Google Scholar 

  • Barkhordarian G, Klassen T, Bormann R (2004) Effect of Nb2O5 content on hydrogen reaction kinetics of Mg. J Alloy Compd 364:242–246

    Article  CAS  Google Scholar 

  • Barkhordarian G, Klassen T, Bormann R (2006) Catalytic mechanism of transition metal compounds on Mg hydrogen sorption reaction. J Phys Chem B110:11020–11024

    Article  Google Scholar 

  • Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  • Bogdanovic B, Schwickardi MJ (1997) Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J Alloy Compd 253/254:1–9

    Article  Google Scholar 

  • Braga VS, Dias JA, Dias SCL, de Macedo JL (2005) Catalyst materials based on Nb2O5 supported on SiO2-Al2O3: preparation and structural characterization. Chem Mater 17:690–695

    Article  CAS  Google Scholar 

  • Burcham LJ, Datka J, Wachs IE (1999) In situ vibrational spectroscopy studies of supported niobium oxide catalysts. J Phys Chem B103:6015–6024

    Article  Google Scholar 

  • Busca G (1998) Spectroscopic characterization of the acid properties of metal oxide catalysts. Catal Today 41:191–206

    Article  CAS  Google Scholar 

  • Cummings DL, Powers GJ (1974) Storage of hydrogen as metal-hydrides. Ind Eng Chem Process Des Dev 13:182–192

    Article  CAS  Google Scholar 

  • Dobbs KD, Hehre WJ (1986) Molecular-orbital theory of the properties of inorganic and organometallic compounds 4–extended basis sets for 3rd-row and 4th-row, main-group elements. J Comput Chem 7:359–378

    Article  CAS  Google Scholar 

  • Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 9:1007–1023

    Article  Google Scholar 

  • Edwards JW, Speiser R, Johnston HL (1951) Structure of barium titanate at elevated temperatures. J Am Chem Soc 73:2934–2935

    Article  CAS  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004). Revision C.02. Gaussian, Inc., Wallingford CT

    Google Scholar 

  • Fukai Y (1994) The metal-hydrogen system. Springer, Berlin

    Google Scholar 

  • Graetz J, Reily JJ (2006) Thermodynamics of the alpha, beta and gamma-polymorphs of AlH3. J Alloy Compd 424:262–265

    Article  CAS  Google Scholar 

  • Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular-orbital methods 12 further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic-molecules. J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  • Hirate H, Saito Y, Nakaya I, Sawai H, Shinzato Y, Yukawa H, Morinaga M, Baba T, Nakai H (2009) Quantitative approach to the understanding of catalytic effect of metal oxides on the desorption reaction of MgH2. Int J Quant Chem 109:2793–2800

    Article  CAS  Google Scholar 

  • Hirate H, Saito Y, Nakaya I, Sawai H, Yukawa H, Morinaga M, Nakai H (2011a) Quantitative evaluation of catalytic effect of metal chlorides on the decomposition reaction of NaAlH4. Int J Quantum Chem 111:950–960

    Article  CAS  Google Scholar 

  • Hirate H, Sawai H, Yukawa H, Morinaga M (2011b) Role of O-H bonding in catalytic activity of Nb2O5 during the course of dehydrogenation of MgH2. Int J Quantum Chem 111:2251–2257

    Article  CAS  Google Scholar 

  • Huzinaga S, Andzelm J, Klobukowski M, Radzioandzelm E, Sakai Y, Tatewaki H (1984) Gaussian basis sets for molecular calculation. Elsevier, New York

    Google Scholar 

  • Kennedy BJ, Howard CJ, Chakoumakos BC (1999) Phase transitions in perovskite at elevated temperatures – a powder neutron diffraction study. J Phys Condens Matter 11:1479–1488

    Article  CAS  Google Scholar 

  • Kingery WD, Bowen HK, Uhlman DR (1976) Introduction to ceramics. Wiley, New York/London

    Google Scholar 

  • Kohn W, Sham LJ (1965) Self-consistent equation including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  • Komiya K, Morisaku N, Shinzato Y, Orimo S, Ohki Y, Tatsumi K, Yukawa H, Morinaga M (2007) Synthesis and dehydrogenation of M(AlH4)2 (M = Mg, Ca). J Alloy Compd 446–447:237–241

    Article  Google Scholar 

  • Kwei GH, Lawson AC, Billinge SJL, Cheong SW (1993) Structures of the ferroelectric phases of barium-titanate. J Phys Chem 97:2368–2377

    Article  CAS  Google Scholar 

  • Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  • Liu X, Lieberman RC (1993) X-ray powder diffraction study of CaTiO3 perovskite at high temperatures. Phys Chem Miner 20:171–175

    Article  CAS  Google Scholar 

  • Milman V, Winkler B, White JA, Pickard CJ, Payne MC, Akhmatskaya EV, Nobes RH (2000) Electronic structure, properties, and phase stability of inorganic crystals: a pseudopotential plane-wave study. Int J Quantum Chem 77:895–910

    Article  CAS  Google Scholar 

  • Miyake S, Ueda R (1947) On phase transformation of BaTiO3. J Phys Soc Jpn 2:93–97

    Article  CAS  Google Scholar 

  • Mulliken RS (1955) Electronic population analysis of LCAO-MO molecular wave functions. 1. J Chem Phys 23:1833–1840

    Article  CAS  Google Scholar 

  • Nakai H (2002) Energy density analysis with Kohn-Sham orbitals. Chem Phys Lett 363:73–79

    Article  CAS  Google Scholar 

  • Nakai H, Kurabayashi Y, Katouda M, Atsumi T (2007) Extension of energy density analysis to periodic boundary condition calculation: evaluation of locality in extended systems. Chem Phys Lett 438:132–138

    Article  CAS  Google Scholar 

  • Oelerich W, Klassem T, Bormann R (2001) Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. J Alloy Compd 315:237–242

    Article  CAS  Google Scholar 

  • Perdew JP, Burke K, Wang Y (1996) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B 54:16533–16539

    Article  CAS  Google Scholar 

  • Pimentel GC, Spratley RD (1969) Chemical bonding clarified through quantum chemistry. Holden-day, San Francisco

    Google Scholar 

  • Rassolo VA, Pople JA, Ratner M, Windus TL (1998) 6-31G* basis set for atoms K through Zn. J Chem Phys 109:1223–1229

    Article  Google Scholar 

  • Schafer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian-Basis sets for atoms Li to Kr. J Chem Phys 97:2571–2577

    Article  Google Scholar 

  • Schafer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian-basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100:5829–5835

    Article  Google Scholar 

  • Shinzato Y, Yukawa H, Morinaga M, Baba T, Nakai H (2007a) A unified approach to the analysis of the chemical bond in hydrides and hydrocarbons. Acta Mater 55:6673–6680

    Article  CAS  Google Scholar 

  • Shinzato Y, Yukawa H, Morinaga M, Baba T, Nakai H (2007b) Energy density analysis of the chemical bond between atoms in perovskite-type hydrides. J Alloy Compd 446–447:96–100

    Article  Google Scholar 

  • Shinzato Y, Saito Y, Yukawa H, Morinaga M, Baba T, Nakai H (2007c) New expression of the chemical bond in perovskite-type oxides. Mater Sci Forum 561–565:1823–1826

    Article  Google Scholar 

  • Shinzato Y, Saito Y, Yoshino M, Yukawa H, Morinaga M, Baba T, Nakai H (2011) Energy expression of the chemical bond between atoms in metal oxides. J Phys Chem Solids 72:853–861

    Article  CAS  Google Scholar 

  • Slater JC (1951) A simplification of the Hartree-Fock method. Phys Rev 81:385–390

    Article  CAS  Google Scholar 

  • Stampfer JF Jr, Holley CE Jr, Suttle JF (1960) The magnesium-hydrogen system. J Am Chem Soc 82:3504–3508

    Article  CAS  Google Scholar 

  • Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized Eigen value formalism. Phys Rev B 41:7892–7895

    Article  Google Scholar 

  • Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin-density calculation – a critical analysis. Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  • Weast RC, Astle MJ, Beyer WH (2003) CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data, 84th edn. CRC Press, Boca Raton

    Google Scholar 

  • Wigner EP, Seitz F (1955) Qualitative analysis of the cohesion in metals. Solid State Phys 1:97–126

    CAS  Google Scholar 

  • Woon DE, Dunning TH (1993) Gaussian-Basis sets for use in correlated molecular calculations. 3. The atoms aluminum through argon. J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

  • Yoshino M, Liu Y, Tatsumi K, Tanaka I, Morinaga M, Adachi H (2003) Local geometries and energetics of hydrogen in acceptor-doped SrZrO3. Solid State Ion 162–163:127–133

    Article  Google Scholar 

  • Yoshino M, Yukawa H, Morinaga M (2004) Modification of local electronic structures due to phase transition in perovskite-type oxides, SrBO3 (B = Zr, Ru, Hf). Mater Trans 45(7):2056–2061

    Article  CAS  Google Scholar 

  • Yvon K (1998) Complex transition-metal hydrides. Chimia 52:613–619

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express sincere thanks to the staff of the Computer Center, Institute for Molecular Science, Okazaki National Institute for the use of their supercomputers. This study is supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan and by the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Morinaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Morinaga, M., Yukawa, H., Nakai, H. (2015). Energy Expression of the Chemical Bond Between Atoms in Hydrides and Oxides and Its Application to Materials Design. In: Ishii, T., Wakita, H., Ogasawara, K., Kim, YS. (eds) The DV-Xα Molecular-Orbital Calculation Method. Springer, Cham. https://doi.org/10.1007/978-3-319-11185-8_7

Download citation

Publish with us

Policies and ethics