Skip to main content

Electronic Structure and Chemical Bonding of Li1.1Nb0.9O2−y as a Negative Electrode Material for Lithium Secondary Batteries

  • Chapter
  • First Online:
The DV-Xα Molecular-Orbital Calculation Method

Abstract

An oxide, Li1.1Nb0.9O2−y is proposed as a novel active material for the negative electrode of lithium secondary batteries. The material was selected by first principles calculation and its real properties as a negative electrode were measured after it was synthesized by solid state reactions. The electronic structure and chemical bonding of the Li1.1V0.9O2−y (R-3m) and Li1.1Nb0.9O2−y (P63/mmc) were studied by two kinds of first-principles calculations: molecular orbital (MO) calculations by the DV-Xα method and the ab initio total-energy and molecular dynamics program VASP (Vienna Ab-initio Simulation Package). Mulliken’s population analysis was thoroughly conducted to examine the net charge as well as the magnitude of covalent bonding. Mulliken’s charge of Li in Li1.1V0.9O2 (R-3m) and Li1.1Nb0.9O2−y (P63/mmc) and the BOP value for Li–O and V–O are different in their structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi H, Tsukada M, Satoko C (1978) Discrete variational Xα cluster calculations. I. application to metal clusters. J Phys Soc Jpn 45:875

    Article  CAS  Google Scholar 

  • Anani A, Crouch-Baker S, Huggins RA (1987) Measurement of lithium diffusion in several binary lithium alloys at ambient temperature. In: Dey AN (ed) Proceedings of the ECS symposium on lithium batteries, Pennington, p 365

    Google Scholar 

  • Averill FW, Ellis DE (1973) An efficient numerical multicenter basis set for molecular orbital calculation: application to FeCl4. J Chem Phys 59:6412

    Article  CAS  Google Scholar 

  • Ceder G, Aydinol MK, Kohan AF (1997) Application of first-principles calculations to the design of rechargeable Li-batteries. Comput Mater Sci 8:161

    Article  CAS  Google Scholar 

  • Choi W, Lee JY, Jung BH, Lim HS (2004) Microstructure and electrochemical properties of a nanometer-scale tin anode for lithium secondary batteries. J Power Sources 136:154

    Article  CAS  Google Scholar 

  • Denis S, Baudrin E, Touboul M, Tarascon J-M (1997) Synthesis and electrochemical properties vs. Li of amorphous vanadates of general formula RVO4 (R = In, Cr, Fe, Al, Y). J Electrochem Soc 144:4099

    Article  CAS  Google Scholar 

  • Ellis DE, Adachi H, Averill FW (1976b) Molecular cluster theory for chemisorptions of first row atoms on nickel (100) surfaces. Surf Sci 58:496

    Article  Google Scholar 

  • Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Tin- based amorphous oxide: a high-capacity lithium-ion-storage material. Science 276:1395

    Article  CAS  Google Scholar 

  • Kim Y-S, Koyama Y, Tanaka I, Adachi H (1998) Chemical bondings around intercalated Li atoms in LiTiX2(X = S, Se, and Te). Jpn J Appl Phys 37:6440

    Article  CAS  Google Scholar 

  • Kim Y-S, Na K, Lee M-H, Back C, Baik Y, Jeong E-D, Hwang S-H, Lee S-R, Yin R-Z, Jeong S-K (2012) Synthesis and electrochemical characterization of Li1.1Nb0.9O2-x as a novel active material for the negative electrode of lithium secondary batteries. Mater Lett 83:14

    Article  CAS  Google Scholar 

  • Koyama Y, Kim Y-S, Tanaka I, Adachi H (1999a) Changes in chemical bondings by Li deintercalation in LiMO2(M = Cr, V, Co, and Ni). Jpn J Appl Phys 38:2024

    Article  CAS  Google Scholar 

  • Koyama Y, Tanaka I, Kim Y-S, Nishitani SR, Adachi H (1999b) First principles study on factors determining battery voltages of LiMO2 (M D Ti–Ni). Jpn J Appl Phys 38:4804

    Article  CAS  Google Scholar 

  • Koyama Y, Tanaka I, Adachi H, Makimura Y, Ohzuku T (2003) Crystal and electronic structures of superstructural Li1−x [Co1/3Ni1/3Mn1/3]O2 (0 ≤ x ≤ 1). J Power Sources 119–121:664

    Google Scholar 

  • Kresse G, Furthmuller J (1996a) Efficiency of ab-initio total energy calculations for metal and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15

    Article  CAS  Google Scholar 

  • Kresse G, Furthmuller J (1996b) Efficiency interactive schemes for ab initio total- energy calculations using a plane-wave basis set. Phys Rev B 54:11669

    Article  Google Scholar 

  • Kresse G, Hafner J (1993) Ab initio molecular dynamics for open-shell transition metals. Phys Rev B 48:13115

    Article  CAS  Google Scholar 

  • Linden D (ed) (1995) Handbook of batteries. McGraw-Hill, New York

    Google Scholar 

  • Mishra SK, Ceder G (1999) Structural stability of lithium manganese oxides. Phys Rev B 59:6120

    Article  CAS  Google Scholar 

  • Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions. I. J Chem Phys 23:1833

    Article  CAS  Google Scholar 

  • Murphy TC, Cason-Smith DM (1990) Characterization of AA size lithium rechargeable cells. In: Proceedings of the 34th international power source symposium, p 176

    Google Scholar 

  • Reed J, Ceder G (2002) Charge, potential, and phase stability of layered Li(Ni0.5Mn0.5)O2. Electrochem Solid-State Lett 5:A145

    Google Scholar 

  • Sony lithium ion battery performance summary (1994) JEC Batt Newslett 2: 31

    Google Scholar 

  • Yin RZ, Kim Y-S, Choi W, Kim SS, Kim H (2008) Structural analysis and first-principles calculation of lithium vanadium oxide for advanced Li-ion batteries. Adv Quantum Chem 54:23

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by KBSI grant (D34808) to Y.-S. Kim.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Ki Jeong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kim, YS. et al. (2015). Electronic Structure and Chemical Bonding of Li1.1Nb0.9O2−y as a Negative Electrode Material for Lithium Secondary Batteries. In: Ishii, T., Wakita, H., Ogasawara, K., Kim, YS. (eds) The DV-Xα Molecular-Orbital Calculation Method. Springer, Cham. https://doi.org/10.1007/978-3-319-11185-8_11

Download citation

Publish with us

Policies and ethics