Skip to main content

Attractor Metadynamics in Adapting Neural Networks

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2014 (ICANN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8681))

Included in the following conference series:

Abstract

Slow adaption processes, like synaptic and intrinsic plasticity, abound in the brain and shape the landscape for the neural dynamics occurring on substantially faster timescales. At any given time the network is characterized by a set of internal parameters, which are adapting continuously, albeit slowly. This set of parameters defines the number and the location of the respective adiabatic attractors. The slow evolution of network parameters hence induces an evolving attractor landscape, a process which we term attractor metadynamics. We study the nature of the metadynamics of the attractor landscape for several continuous-time autonomous model networks. We find both first- and second-order changes in the location of adiabatic attractors and argue that the study of the continuously evolving attractor landscape constitutes a powerful tool for understanding the overall development of the neural dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Izhikevich, E.M.: Dynamical systems in neuroscience. The MIT press (2007)

    Google Scholar 

  2. Gros, C.: Complex and adaptive dynamical systems: A primer. Springer (2013)

    Google Scholar 

  3. Honey, C.J., Kötter, R., Breakspear, M., Sporns, O.: Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proceedings of the National Academy of Sciences 104(24), 10240–10245 (2007)

    Article  Google Scholar 

  4. Kiebel, S.J., Daunizeau, J., Friston, K.J.: A hierarchy of time-scales and the brain. PLoS Computational Biology 4(11), e1000209 (2008)

    Google Scholar 

  5. Ulanovsky, N., Las, L., Farkas, D., Nelken, I.: Multiple time scales of adaptation in auditory cortex neurons. The Journal of Neuroscience 24(46), 10440–10453 (2004)

    Article  Google Scholar 

  6. Marder, E., Goaillard, J.M.: Variability, compensation and homeostasis in neuron and network function. Nature Reviews Neuroscience 7(7), 563–574 (2006)

    Article  Google Scholar 

  7. Turrigiano, G.G., Nelson, S.B.: Homeostatic plasticity in the developing nervous system. Nature Reviews Neuroscience 5(2), 97–107 (2004)

    Article  Google Scholar 

  8. Daoudal, G., Debanne, D.: Long-term plasticity of intrinsic excitability: learning rules and mechanisms. Learning & Memory 10(6), 456–465 (2003)

    Article  Google Scholar 

  9. Echegoyen, J., Neu, A., Graber, K.D., Soltesz, I.: Homeostatic plasticity studied using in vivo hippocampal activity-blockade: synaptic scaling, intrinsic plasticity and age-dependence. PloS one 2(8), e700 (2007)

    Google Scholar 

  10. O’Leary, T., Wyllie, D.J.: Neuronal homeostasis: time for a change? The Journal of Physiology 589(20), 4811–4826 (2011)

    Google Scholar 

  11. Ge, S., Hang, C.C., Lee, T.H., Zhang, T.: Stable adaptive neural network control. Springer Publishing Company, Incorporated (2010)

    Google Scholar 

  12. Beer, R.D.: On the dynamics of small continuous-time recurrent neural networks. Adaptive Behavior 3(4), 469–509 (1995)

    Article  MathSciNet  Google Scholar 

  13. Beer, R.D., Gallagher, J.C.: Evolving dynamical neural networks for adaptive behavior. Adaptive Behavior 1(1), 91–122 (1992)

    Article  Google Scholar 

  14. Triesch, J.: A gradient rule for the plasticity of a neuron’s intrinsic excitability. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 65–70. Springer, Heidelberg (2005)

    Google Scholar 

  15. Marković, D., Gros, C.: Intrinsic adaptation in autonomous recurrent neural networks. Neural Computation 24(2), 523–540 (2012)

    Article  MathSciNet  Google Scholar 

  16. Jaynes, E.T.: Information theory and statistical mechanics. Physical Review 106(4), 620 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  17. Linkerhand, M., Gros, C.: Self-organized stochastic tipping in slow-fast dynamical systems. Mathematics and Mechanics of Complex Systems 1(2), 129–147 (2013)

    Article  MATH  Google Scholar 

  18. Steil, J.J.: Online reservoir adaptation by intrinsic plasticity for backpropagation–decorrelation and echo state learning. Neural Networks 20(3), 353–364 (2007)

    Article  MATH  Google Scholar 

  19. Markovic, D., Gros, C.: Self-Organized Chaos through Polyhomeostatic Optimization. Physical Review Letters 105(6) (August 2010)

    Google Scholar 

  20. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences 79(8), 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  21. Gros, C.: Neural networks with transient state dynamics. New Journal of Physics 9(4), 109 (2007)

    Article  MathSciNet  Google Scholar 

  22. Russo, E., Namboodiri, V.M., Treves, A., Kropff, E.: Free association transitions in models of cortical latching dynamics. New Journal of Physics 10(1), 15008 (2008)

    Article  Google Scholar 

  23. Gros, C.: Cognitive computation with autonomously active neural networks: An emerging field. Cognitive Computation 1(1), 77–90 (2009)

    Article  Google Scholar 

  24. Gros, C., Kaczor, G.: Semantic learning in autonomously active recurrent neural networks. Logic Journal of IGPL 18(5), 686–704 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Linkerhand, M., Gros, C.: Generating functionals for autonomous latching dynamics in attractor relict networks. Scientific Reports 3 (2013)

    Google Scholar 

  26. Beer, R.D.: Dynamical approaches to cognitive science. Trends in Cognitive Sciences 4(3), 91–99 (2000)

    Article  MathSciNet  Google Scholar 

  27. Deco, G., Rolls, E.T., Romo, R.: Synaptic dynamics and decision making. Proceedings of the National Academy of Sciences 107(16), 7545–7549 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Gros, C., Linkerhand, M., Walther, V. (2014). Attractor Metadynamics in Adapting Neural Networks. In: Wermter, S., et al. Artificial Neural Networks and Machine Learning – ICANN 2014. ICANN 2014. Lecture Notes in Computer Science, vol 8681. Springer, Cham. https://doi.org/10.1007/978-3-319-11179-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11179-7_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11178-0

  • Online ISBN: 978-3-319-11179-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics