Skip to main content

Notes on Lusternik-Schnirelman and Morse Theories

  • Chapter
  • First Online:
Elementary Symplectic Topology and Mechanics

Part of the book series: Lecture Notes of the Unione Matematica Italiana ((UMILN,volume 16))

  • 1873 Accesses

Abstract

In this chapter (longer than the others) we will present techniques that are close to other modern research themes: existence theorems for critical points of functions. We will move in many directions, but mainly using constructions that are taken from the techniques in symplectic geometry described up to now. In particular, those on generating functions for Lagrangian submanifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Even though today there are ‘weak’ formulations of Morse theory extending it to degenerate critical points (maybe first in [86]), the universally known definition of Morse function is, up to today, that of functions whose critical points are all non-degenerate.

  2. 2.

    That is, it is defined for \(t \in \mathbb{R}\).

  3. 3.

    That is, any Cauchy sequence does converge in it.

  4. 4.

    That are clearly Palais-Smale.

  5. 5.

    The set of critical points is a closed set, its complement is an open set, and X b ∖ X a is in the interior of such complement: it is then easy to define two open neighborhoods A 1 and A 2 as above.

  6. 6.

    Using Urysohn lemma, given two closed, disjoint sets cl(A 1) and X ∖ A 2, it is possible to define a C -function ϕ, that has value 1 in cl(A 1) and has value 0 in X ∖ A 2. So, for example, \(\bar{Y }:= -\phi \frac{\nabla f(x)} {\vert \nabla f(x)\vert ^{2}}\).

  7. 7.

    This means that there is no constant c > 0 such that \(\vert f^{{\prime}}(x)\vert > c\) on S.

  8. 8.

    In other words, c cannot be an accumulation point of critical values.

  9. 9.

    Once again, Palais-Smale condition implies this fact (Condition (C)): \(f^{-1}([c -\varepsilon _{0},c +\varepsilon _{0}])\setminus V _{0}\) is closed, so we cannot find in it sequence {x j } with df (x j ) → 0, in fact, in such a case there exists some subsequence converging to a critical point x , which should belong to the closed set \(f^{-1}([c -\varepsilon _{0},c +\varepsilon _{0}])\setminus V _{0}\), absurd.

  10. 10.

    Recall that H 0(X) represents the constant functions on the connected components of X, if X = B (ball) then \(H^{0}(B) = \mathbb{R}\), while if k > 0: H k(B) = { 0}.

  11. 11.

    That is, with non degenerate Hessian \(f^{{\prime\prime}}\big\vert _{f^{{\prime}}=0}\).

  12. 12.

    Observe that, from the definition of GFQI, c is uniform in x.

  13. 13.

    See the unpublished work of Ottolenghi-Viterbo [100] and the beautiful book of Siburg [107].

  14. 14.

    Here we denote by \(\mathcal{F}: \text{Sym}(k \times k) \times \mathbb{R}^{n} \rightarrow \text{Sym}(k \times k)\ \ \text{the map}\ \ (R,x)\mapsto R^{T}\mathit{QR} - B(x)\).

  15. 15.

    \(f_{x}^{-\infty } = f^{-\infty },\ \forall x \in U\).

  16. 16.

    I thank Gian Maria Dall’Ara which pointed out to me this nice fact.

  17. 17.

    Arnol’d conjecture is itself an extension, more or less natural, of the last geometric theorem of Poincaré.

  18. 18.

    In a non trivial way, see [119], Prop. 3.3 p. 693.

  19. 19.

    Again, by Lusternik-Schnirelman Theorem 7.7.

  20. 20.

    c stands for capacity, see [55].

  21. 21.

    This is not restrictive, since by Whitney theorem it is sufficient N paracompact.

  22. 22.

    By coordinates, \(v_{g} = \sqrt{\det g}\,\mathit{dx}^{1} \wedge \ldots \wedge \mathit{dx}^{n}\).

  23. 23.

    By coordinates, for any scalar function Φ, the related gradient vector field X is defined by \(X^{i} = (\sharp d\varPhi )^{i} = (\nabla _{g}\varPhi )^{i} = g^{\mathit{ij}} \frac{\partial \varPhi } {\partial x^{j}}\).

  24. 24.

    These formulas were first presented by Hamilton in the “Second essay on a general method in dynamics”, 1835. The author thanks Sergio Benenti for pointing out this remarkable fact.

  25. 25.

    In the Section 28 of Gantmacher [66], this example is really quoted as ‘perturbation theory’.

  26. 26.

    It is sufficient to see that contractive perturbations of the identity are bi-Lipschitz homeomorphisms: (Rem: \(\vert x - y\vert \geq \big\vert \vert x\vert -\vert y\vert \big\vert \geq \vert x\vert -\vert y\vert \)) Since f: X → X is contractive, | f(x 1) − f(x 2) | ≤ λ | x 1x 2 | ,   λ < 1, then If is injective: \(\vert (x_{1}-f(x_{1}))-(x_{2}-f(x_{2}))\vert = \vert (x_{1}-x_{2})-(f(x_{1})-f(x_{2}))\vert \geq \vert x_{1}-x_{2}\vert -\vert f(x_{1})-f(x_{2})\vert \geq (1-\lambda )\vert x_{1}-x_{2}\vert \). Thus the inverse g di If is Lipschitz with \(\mathrm{Lip}(g) = \frac{1} {1-\lambda }\). The surjectivity of If is gained from the fixed point: for any y ∈ X, the map xy + f(x) is obviously contractive, then there exists an unique x such that x = y + f(x), so that xf(x) = y. □ 

  27. 27.

    This new definition of Generating Function Weakly Quadratic at Infinity, is equivalent to the definition of GFQI; this equivalence was established by Viterbo and Theret [113, 114].

References

  1. B. Aebischer, et al., Symplectic Geometry. Progress in Mathematics, (Boston, Mass.), vol. 124 (Birkhäuser, Basel, 1994), xii, 239p

    Google Scholar 

  2. V.I. Arnol’d, Mathematical Methods of Classical Mechanics, 2nd edn. (Springer, New York, 1989)

    Google Scholar 

  3. M. Audin, M. Damian, Morse Theory and Floer Homology. Universitext, vol. XIV (Springer, London, 2014), 596pp. Original French edition published by EDP Sciences, Les Ulis Cedex A, France, 2010

    Google Scholar 

  4. A. Banyaga, On the group of strong symplectic homeomorphisms. CUBO, Math. J. 12(03), 49–69 (2010)

    Google Scholar 

  5. S. Benenti, Hamiltonian Optics and Generating Families (Bibliopolis, Neaples, 2004)

    Google Scholar 

  6. S. Benenti, Hamiltonian Structures and Generating Families. Universitext (Springer, New York, 2011)

    Book  MATH  Google Scholar 

  7. O. Bernardi, F. Cardin, On Poincaré-Birkhoff periodic orbits for mechanical Hamiltonian systems on \(T^{{\ast}}\mathbb{T}^{n}\). J. Math. Phys. 47, 072701-1–072701-15 (2006)

    Google Scholar 

  8. R. Bott, L. Tu, Differential Forms in Algebraic Topology. Graduate Texts in Mathematics, vol. 82 (Springer, New York/Berlin, 1982), xiv+331pp

    Google Scholar 

  9. F. Cardin, C. Viterbo, Commuting Hamiltonians and multi-time Hamilton-Jacobi equations. Duke Math. J. 144(2), 235–284 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. F. Cardin, S. Vazzoler, Symplectic rigidity and weak commutativity. J. Symplectic Geom. 11(2), 163–166 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Chaperon, Une idée du type “géodésiques brisées” pour les systèmes Hamiltoniens. C. R. Acad. Sci. Paris Sér. I Math. 298(13), 293–296 (1984)

    MATH  MathSciNet  Google Scholar 

  12. M. Chaperon, Familles génératrices. Cours l’école d’été Erasmus de Samos (Publication Erasmus de l’Université de Thessalonique, 1993)

    Google Scholar 

  13. B.A. Dubrovin, A.T. Fomenko, S.P. Novikov, Modern Geometry—Methods and Applications. Part III. Introduction to Homology Theory. Graduate Texts in Mathematics, vol. 124 (Springer, New York, 1990), x+416pp

    Google Scholar 

  14. Y. Eliashberg, A theorem on the structure of wave fronts and applications in symplectic topology. Funct. Anal. Appl. 21, 227–232 (1987)

    Article  MathSciNet  Google Scholar 

  15. I. Ekeland, H. Hofer, Symplectic topology and Hamiltonian dynamics. Math. Z. 200, 355–378 (1990)

    Article  MathSciNet  Google Scholar 

  16. S. Gallot, D. Hulin, J. Lafontaine, Riemannian Geometry. Universitext, 3rd edn. (Springer, Berlin, 2004), xvi+322pp

    Google Scholar 

  17. F. Gantmacher, Lectures in Analytical Mechanics (Mir Publications, Moscow, 1975), 264pp

    Google Scholar 

  18. C. Godbillon, Éléments de topologie algébrique (Hermann, Paris, 1971), 249pp

    MATH  Google Scholar 

  19. C. Golé, Symplectic Twist Maps. Global Variational Techniques. Advanced Series in Nonlinear Dynamics, vol. 18 (World Scientific, River Edge, 2001), xviii+305pp

    Google Scholar 

  20. M. Gromov, Pseudoholomorphic curves in symplectic manifolds. Invent. Math. 82(2), 307–347 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  21. H. Hofer, E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics. Birkhäuser Advanced Texts (Birkhäuser, Basel, 1994), xiv+341pp

    Google Scholar 

  22. V. Humilière, On some completions of the space of Hamiltonian maps. Bull. Soc. Math. Fr. 136(3), 373–404 (2008)

    MATH  Google Scholar 

  23. V. Humilière, Hamiltonian pseudo-representations. Comment. Math. Helv. 84(3), 571–585 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. L. Lusternik, L. Schnirelman, Méthodes topologiques dans les problèmes variationnels (Hermann, Paris, 1934)

    MATH  Google Scholar 

  25. A. Marino, G. Prodi, Metodi perturbativi nella teoria di Morse. Boll. Un. Mat. Ital. (4) 11(3), 1–32 (1975)

    Google Scholar 

  26. D. McDuff, D. Salamon, Introduction to Symplectic Topology. Oxford Mathematical Monographs, 2nd edn. (The Clarendon/Oxford University Press, New York, 1998)

    Google Scholar 

  27. J. Milnor, Morse Theory, vol. 51 (Princeton University Press, Princeton, 1963), vi+153pp

    Google Scholar 

  28. A. Ottolenghi, C. Viterbo, Solutions generalisees pour l’equation de Hamilton-Jacobi dans le cas d’evolution (pre-print)

    Google Scholar 

  29. R.S. Palais, Morse theory on Hilbert manifolds. Topology 2, 299–340 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  30. K.F. Siburg, The Principle of Least Action in Geometry and Dynamics. Lecture Notes in Mathematics, 1844 (Springer, Berlin, 2004)

    Google Scholar 

  31. M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 34, 2nd edn. (Springer, Berlin, 1996), xvi+272pp

    Google Scholar 

  32. D. Theret, Utilisation des fonctions génératrices en géométrie symplectique globale. PhD thesis, Université Paris 7, 1996

    Google Scholar 

  33. D. Theret, A complete proof of Viterbo’s uniqueness theorem on generating functions. Topol. Appl. 96, 249–266 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  34. W.M. Tulczyjew, Geometric Formulation of Physical Theories, Statics and Dynamics of Mechanical Systems (Bibliopolis, Neaples, 1989)

    Google Scholar 

  35. C. Viterbo, Symplectic topology as the geometry of generating functions. Math. Ann. 292, 685–710 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  36. C. Viterbo, Solutions of Hamilton-Jacobi Equations and Symplectic Geometry. Addendum to: Séminaire sur les Équations aux Dérivžées Partielles. 1994–1995 (École Polytech., Palaiseau, 1995)

    Google Scholar 

  37. C. Viterbo, Symplectic topology and Hamilton-Jacobi equations, in Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology. NATO Science Series II: Mathematics, Physics and Chemistry, vol. 217 (Springer, Dordrecht, 2006), pp. 439–459

    Google Scholar 

  38. C. Viterbo, Symplectic Homogenization (2014). arXiv:0801.0206v3

    Google Scholar 

  39. A. Weinstein, Lectures on Symplectic Manifolds. CBMS Conference Series (AMS 29, Providence, 1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cardin, F. (2015). Notes on Lusternik-Schnirelman and Morse Theories. In: Elementary Symplectic Topology and Mechanics. Lecture Notes of the Unione Matematica Italiana, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-11026-4_7

Download citation

Publish with us

Policies and ethics