Skip to main content

Symplectic Manifolds

  • Chapter
  • First Online:
Elementary Symplectic Topology and Mechanics

Part of the book series: Lecture Notes of the Unione Matematica Italiana ((UMILN,volume 16))

Abstract

We say that a smooth manifold M is a symplectic manifold if it is given together with a 2-form ω ∈ Ω 2(M) which is

$$\displaystyle{\begin{array}{rrl} (i)& \ \mathrm{Closed}:&d\omega = 0,\\ (\mathit{ii } )&\ \mathrm{Non\ degenerate:}&\langle u \wedge v,\omega \rangle = 0\ \ \forall v\ \Rightarrow \ u = 0, \\ \end{array} }$$

we denote with \(\langle v_{1} \wedge \ldots \wedge v_{k},f\rangle\) the evaluation of a k-form f on k vectors v 1, , v k .

The name complex group formerly advocated by me in allusion to line complexes, as these are defined by the vanishing of antisymmetric bilinear forms, has become more and more embarrassing through collision with the word complex in the connotation of complex number. I therefore propose to replace it by the corresponding Greek adjective symplectic.

Hermann Weyl, The classical Groups

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Topologically well-structured, e.g. paracompact, or more.

  2. 2.

    For \(\mathbb{S}^{2}\) this argument does not work, \(H^{2}(\mathbb{S}^{2})\neq \{0\}\): verify this fact by Stokes theorem.

  3. 3.

    If \(\text{rank}\,dH\big\vert _{H^{-1}(0)} =\max\).

  4. 4.

    \(\mathbb{R}^{k} \approx (\mathbb{R}^{k})^{{\ast}}\).

  5. 5.

    Someone could recognize here a ‘partial Legendre Transform’.

  6. 6.

    This is possible by rotation matrices, because the above 1 + ∇ yy 2 W(y)t is symmetric.

  7. 7.

    Up to an unessential change of a sign compared to the original version in Viterbo.

  8. 8.

    Remember that: \(H^{1}([0, 1]; \mathbb{R}^{n}) \subset C^{0}([0, 1]; \mathbb{R}^{n})\).

References

  1. V.I. Arnol’d, Reconstructions of singularities of potential flows in a collision-free medium and caustic metamorphoses in three-dimensional space (Russian). Trudy Sem. Petrovsk. 8, 21–57 (1982)

    Google Scholar 

  2. V.I. Arnol’d, Mathematical Methods of Classical Mechanics, 2nd edn. (Springer, New York, 1989)

    Google Scholar 

  3. V.I. Arnol’d, Ya.B. Zeldovich, S.F. Shandarin, The large-scale structure of the universe. I. General properties. One-dimensional and two-dimensional models (Russian). Akad. Nauk SSSR Inst. Prikl. Mat. (100), 31 (preprint, 1981)

    Google Scholar 

  4. I. Ekeland, The Best of All Possible Worlds: Mathematics and Destiny (University of Chicago Press, Chicago, 2006), 207pp

    Google Scholar 

  5. M. Gromov, Pseudoholomorphic curves in symplectic manifolds. Invent. Math. 82(2), 307–347 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  6. L. Hörmander, Fourier integral operators. I. Acta Math. 127(1–2), 79–183 (1971)

    Article  MATH  Google Scholar 

  7. V.P. Maslov, Theorie des perturbations et methodes asymptotiques (It is the French translation of Perturbation theory and asymptotic methods (Russian), Izdat. Moscow University, Moscow, 1965). suivi de deux notes complementaires de V.I. Arnol’d et V.C. Bouslaev; preface de J. Leray, vol. XVI (Dunod, Paris, 1972), 384pp

    Google Scholar 

  8. D. McDuff, D. Salamon, Introduction to Symplectic Topology. Oxford Mathematical Monographs, 2nd edn. (The Clarendon/Oxford University Press, New York, 1998)

    Google Scholar 

  9. H.J. Sussmann, J.C. Willems, 300 Years of Optimal Control: From the Brachistochrone to the Maximum Principle. IEEE Control Syst. Mag. 17, 32–44 (1997)

    Article  Google Scholar 

  10. S. Tabachnikov, Introduction to Symplectic Topology. Lecture Notes. http://www.math. psu.edu/tabachni/courses/courses.html

    Google Scholar 

  11. W.M. Tulczyjew, A symplectic formulation of relativistic particle dynamics. Acta Phys. Polon. B(8), 39 (1977)

    Google Scholar 

  12. W.M. Tulczyjew, The Legendre transformation. Ann. Inst. H. Poincaré, 27, 101–114 (1977)

    MATH  MathSciNet  Google Scholar 

  13. W.M. Tulczyjew, Geometric Formulation of Physical Theories, Statics and Dynamics of Mechanical Systems (Bibliopolis, Neaples, 1989)

    Google Scholar 

  14. A.M. Vinogradov, Multivalued Solutions and a Principle of Classification of non-linear differential equations. Sov. Math. Dokl. 14(3), 661 (1973)

    Google Scholar 

  15. C. Viterbo, Symplectic topology as the geometry of generating functions. Math. Ann. 292, 685–710 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Weinstein, Lectures on Symplectic Manifolds. CBMS Conference Series (AMS 29, Providence, 1977)

    Google Scholar 

  17. G. Zampieri, Gradients and canonical transformations. Ann. Polon. Math. 72(2), 153–158 (1999)

    MATH  MathSciNet  Google Scholar 

  18. Ya.B. Zeldovich, Gravitational instability: an approximate theory for large density perturbation. (Russian) Astron. Astrophys. 5, 84–89 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cardin, F. (2015). Symplectic Manifolds. In: Elementary Symplectic Topology and Mechanics. Lecture Notes of the Unione Matematica Italiana, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-11026-4_2

Download citation

Publish with us

Policies and ethics