Skip to main content

Chromium Phyto-transformation in Salt Marshes: The Role of Halophytes

  • Chapter
  • First Online:
Phytoremediation

Abstract

Wetlands, in particular salt marshes, are very interesting field laboratories to study metal biogeochemistry, namely, Cr. Due to the heavily industrialized history of most of estuarine systems, salt marshes became large deposits of heavy metals. Due to the large affinity of Cr to the medium organic matter, the removal of Cr throughout natural or enhanced processes occurs throughout plant-mediated processes. Naturally, plants acquire during their life cycle nutrients from their sediments but also some non-nutritional elements, like Cr, and store them in their tissues. In the last decades, this natural ability attracted the attention of several projects focusing on the enhancement of this process throughout the application of transporter molecules, like LMWOA, in order to increase the sediment-plant Cr transport. Due to its chemistry, Cr presents to oxidation states, Cr (III) and Cr (VI), being this last very toxic. Thus it became important to study not only the plant accumulation capacity but also the root-mediated processes of phyto-conversion of Cr (VI) toxic form to the less toxic Cr (III). Again, halophytes acquire an important role with high conversion efficiencies. All these passive and enhanced processes point out to a promising biotechnology using halophytes as potential cleaners of Cr-contaminated sediments, using environmental-friendly and low-cost technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barceloux D (1999) Chromium. J Tox Clin Tox 37:173–194

    Article  CAS  Google Scholar 

  • Bartlett RJ (1991) Cr cycling in soils and water: links, gaps and methods. Environ Health Persp 92:17–24

    Article  CAS  Google Scholar 

  • Bewers J, Yeats P (1989) Transport of river-derived trace metals through the coastal zone. Nether J Sea Res 23:359–368

    Article  CAS  Google Scholar 

  • Bluskov S, Arocena J, Omotoso O, Young J (2005) Uptake, distribution, and speciation of chromium in Brassica Juncea. Int J Phytoremediation 7:153–165

    Article  CAS  PubMed  Google Scholar 

  • Brown S, Chaney R, Angle J, Baker A (1994) Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc- and cadmium-contaminated soil. J Environ Qual 23:1151–1157

    Article  CAS  Google Scholar 

  • Caçador I, Caetano M, Duarte B, Vale C (2009) Stock and losses of trace metals from salt marsh plants. Mar Environ Res 67:75–82

    Article  PubMed  Google Scholar 

  • Caçador I, Neto JM, Duarte B, Barroso DV, Pinto M, Marques JC (2013) Development of an Angiosperm Quality Assessment Index (AQuA – Index) for ecological quality evaluation of Portuguese water bodies – a multi-metric approach. Ecol Ind 25:141–148

    Article  Google Scholar 

  • Caçador I, Vale C, Catarino F (1996) The influence of plants on concentration and fractionation of Zn, Pb, and Cu in salt marsh sediments (Tagus Estuary, Portugal). J Aquat Ecosyst Health 5:193–198

    Article  Google Scholar 

  • Couto T, Duarte B, Barroso D, Caçador I, Marques JC (2013) Halophytes as sources of metals in estuarine systems with low levels of contamination. Funct Plant Biol 40:931–939

    CAS  Google Scholar 

  • Cunningham S, Ow D (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cunningham S, Berti W, Huang J (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397

    Article  CAS  Google Scholar 

  • Doyle M, Otte M (1997) Organism-induced accumulation of Fe, Zn and AS in wetland soils. Environ Pollut 96:1–11

    Article  CAS  PubMed  Google Scholar 

  • Duarte B, Caetano M, Almeida P, Vale C, Caçador I (2010) Accumulation and biological cycling of heavy metal in the root-sediment system of four salt marsh species, from Tagus estuary (Portugal). Environ Pollut 158:1661–1668

    Article  CAS  PubMed  Google Scholar 

  • Duarte B, Delgado M, Caçador I (2007) The role of citric acid in cadmium and nickel uptake and translocation, in Halimione portulacoides. Chemosphere 69:836–840

    Article  CAS  PubMed  Google Scholar 

  • Duarte B, Raposo P, Caçador I (2009) Spartina maritima (cordgrass) rhizosediment extracellular enzymatic activity and its role on organic matter decomposition and metal speciation processes. Mar Ecol 30:65–73

    Article  Google Scholar 

  • Duarte B, Reboreda R, Caçador I (2008) Seasonal variation of extracellular enzymatic activity (EEA) and its influence on metal speciation in a polluted salt marsh. Chemosphere 73:1056–1063

    Article  CAS  PubMed  Google Scholar 

  • Duarte B, Silva V, Caçador I (2012) Hexavalent chromium reduction, uptake and oxidative biomarkers in Halimione portulacoides. Ecotoxicol Environ Saf 83:1–7

    Article  CAS  PubMed  Google Scholar 

  • Gupta M, Cuypers A, Vangronsveld J, Clijsters H (1999) Copper affects the enzymes of the ascorbate-glutathione cycle and its related metabolites in the roots of Phaseolus vulgaris. Physiol Plant 106:262–267

    Article  CAS  Google Scholar 

  • Jacob D, Otte M (2004) Influence of Typha latifolia and fertilization on metal mobility in two different Pb Zn mine tailings types. Sci Total Environ 333:9–24

    Article  CAS  PubMed  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CRC Press, Boca Ratón, FL

    Google Scholar 

  • Katz S, Salem H (1994) The biological and environmental chemistry of chromium. VCH, New York

    Google Scholar 

  • Kortenkamp A, Casadevall M, Faux SP, Jenner A, Shayer R, Woodbridge N, O’Brien P (1996) A role for molecular oxygen in the formation of DNA damage during the reduction of the carcinogen chromium(VI) by glutathione. Arch Biochem Biophys 329:199–207

    Article  CAS  PubMed  Google Scholar 

  • Losi M, Amrhein C, Frankenberger W (1994) Environmental biochemistry of chromium. Rev Environ Contam Toxicol 136:91–121

    CAS  PubMed  Google Scholar 

  • Lytle C, Lytle F, Yang N, Qian J, Hanen D, Zayed A, Terry N (1998) Reduction of Cr (VI) to Cr (III) by wetland plants: potential for in situ heavy metal detoxification. Environ Sci Technol 32:3087–3093

    Article  CAS  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278

    Article  CAS  PubMed  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press Limited, London

    Google Scholar 

  • Mikalsen A, Alexander J, Wallin J, Ingelman-Sundberg M, Andersen R (1991) Reductive metabolism and protein binding of chromium(VI) by P450 protein enzymes. Carcinogenesis 12:825–831

    Article  CAS  PubMed  Google Scholar 

  • Morris A, Bale A, Howland R, Millward G, Ackroyd D, Loring D, Rantala T (1986) Sediment mobility and its contribution to trace metal cycling and retention in a macrotidal estuary. Water Sci Technol 18:111–119

    CAS  Google Scholar 

  • Mucha AP, Almeida CM, Bordalo AA, Vasconcelos MT (2005) Exudation of organic acids by a marsh plant and implications on trace metal availability in the rhizosphere of estuarine sediments. Estuarine Coastal Shelf Sci 65:191–198

    Article  CAS  Google Scholar 

  • Nies D (1992) Resistance to cadmium, cobalt, zinc and nickel in microbes. Plasmid 27:17–28

    Article  CAS  PubMed  Google Scholar 

  • Nriagu J (1988) A silent epidemic of environmental metal poisoning. Environ Pollut 50:139–161

    Article  CAS  PubMed  Google Scholar 

  • Parker D, Pedler J, Ahnstrom Z, Resketo M (2001) Re-evaluating the free-ion activity model of trace metal toxicity toward higher plants: experimental evidence with copper and zinc. Environ Toxicol Chem 20:899–906

    Article  CAS  PubMed  Google Scholar 

  • Pazos-Capeáns P, Barciela-Alonso M, Herbello-Hermelo P, Bermejo-Barra P (2010) Estuarine increase of chromium surface sediments: distribution, transport and time evolution. Microchem J 96:362–370

    Article  Google Scholar 

  • Qian J-H, Zayed A, Zhu Y-L, Yu M, Terry N (1999) Phytoaccumulation of trace elements by wetland plants. III. Uptake and accumulation of trace elements by 12 plant species. J Environ Qual 28:1448–1455

    Article  CAS  Google Scholar 

  • Reboreda R, Caçador I (2007) Copper, zinc and lead speciation in salt marsh sediments colonised by Halimione portulacoides and Spartina maritima. Chemosphere 69:1655–1661

    Article  CAS  PubMed  Google Scholar 

  • Redondo-Gómez S, Mateos-Naranjo E, Vecino-Bueno I, Feldman S (2011) Accumulation and tolerance characteristics of chromium in a cordgrass Cr-hyper-accumulator, Spartina argentinensis. J Hazard Mater 185:862–869

    Article  PubMed  Google Scholar 

  • Romheld V, Marschner H (1983) Mechanism of iron uptake by peanut plants: I. FeIII reduction, chelate splitting, and release of phenolics. Plant Physiol 71:949–954

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salt D, Pickering I, Prince R, Gleba D, Dushenkov S, Smith R, Raskin I (1997) Metal accumulation by aquacultured seedlings of Indian mustard. Environ Sci Technol 31:1636–1644

    Article  CAS  Google Scholar 

  • Shen H, Wang Y (1993) Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456. Appl Environ Microbiol 59:3771–3777

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sinha S, Bhatt K, Pandey K, Singh S, Saxena R (2003) Interactive metal accumulation and its toxic effects under repeated exposure in submerged plant Najas indica Cham. Bull Environ Contam Toxicol 70:696–704

    Article  CAS  PubMed  Google Scholar 

  • Sinicrope T, Langis R, Gergberg R, Busnardo M, Zedler J (1992) Removal of metals by wetland mesocosms subjected to different hydroperiods. Ecol Eng 1:309–322

    Article  Google Scholar 

  • Srivastava S, Prakash S, Srivastava M (1999) Chromium mobilization and plant availability – the impact of organic complexing ligands. Plant Soil 212:203–208

    Article  CAS  Google Scholar 

  • Stearns D, Kennedy L, Courtney K, Giangrande P, Phieffer L, Wetterhahn K (1995) Reduction of chromium(VI) by ascorbate leads to chromium-DNA binding and DNA strand breaks in vitro. Biochemistry 34:910–919

    Article  CAS  PubMed  Google Scholar 

  • Sundby B, Vale C, Caçador I, Catarino F, Madureira MJ, Caetano M (1998) Metal-rich concretions on the roots of salt marsh plants: mechanism and rate of formation. Limnol Oceanogr 43:245–252

    Article  CAS  Google Scholar 

  • Suntornvongsagul K, Burke D, Hamerlynck E, Hahn D (2007) Fate and effects of heavy metals in salt marsh sediments. Environ Pollut 149:79–91

    Article  CAS  PubMed  Google Scholar 

  • Suseela MR, Sinha S, Singh S, Saxena R (2002) Scanning electron microscopic studies of Scirpus lacustris L. treated with Cr and tannery effluent: accumulation of metal. Bull Environ Contam Toxicol 68:540–548

    Article  CAS  PubMed  Google Scholar 

  • Tanackovic S, Caetano M, Vale C (2008) Effect of salt-marsh plants on the mobility of Cr in sediments. Ciencias Marinas 34:363–372

    CAS  Google Scholar 

  • Vale C (1990) Temporal variations of particulate metals in the Tagus estuary. Sci Total Environ 97:137–154

    Article  Google Scholar 

  • Vale C, Canário J, Caetano M, Lavrado J, Brito P (2008) Estimation of the anthropogenic fraction of elements in surface sediments of the Tagus Estuary (Portugal). Mar Pollut Bull 56:1353–1376

    Article  Google Scholar 

  • Viers J, Dupré B, Gaillardet J (2009) Chemical composition of suspended sediments in World Rivers: new insights from a new database. Sci Total Environ 407:853–868

    Article  CAS  PubMed  Google Scholar 

  • Weis J, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30:685–700

    Article  CAS  PubMed  Google Scholar 

  • Williams TP, Bubb JM, Lester JN (1994) Metal accumulation within salt marsh environments: a review. Mar Pollut Bull 28:277–290

    Article  CAS  Google Scholar 

  • Wittbrodt P, Palmer C (1996) Effect of temperature, ionic strength, background electrolytes, and Fe(III) on the reduction of hexavalent chromium by soil humic substances. Environ Sci Technol 30:2470–2477

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardo Duarte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Caçador, I., Duarte, B. (2015). Chromium Phyto-transformation in Salt Marshes: The Role of Halophytes. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-10969-5_18

Download citation

Publish with us

Policies and ethics