Skip to main content

Phytoremediation Using Leguminous Plants: Managing Cadmium Stress with Applications of Arbuscular Mycorrhiza (AM) Fungi

  • Chapter
  • First Online:
Phytoremediation

Abstract

Legumes are the part of crop-rotation to enrich soil mineral availability naturally for the legumes itself and successive nonleguminous crop. The fixation of abundant but chemically inert molecular nitrogen is brought about by the important symbiosis of roots of legumes with Rhizobium present in the soil. Pulses are the major group of leguminous plants cultivated for edible grains besides other economically important parts. Application of pesticides in the arable lands has been a well-recognized cause of increasing anthropogenic rise of soil cadmium level. Cadmium (Cd) is a highly toxic, nonessential heavy metal which significantly disturbs the metabolism, physiological processes, growth, and yield of crop plants. Plants deploy various mechanisms to cope up Cd-induced toxicity, hence categorized accordingly. In legumes Cd has been reported to disturb soil microbial population and its symbiotic relation with legumes root system. This leads to declined growth performance and productivity of pulses. Alternatively, mycorrhizal web associated with plant root system could work as a sieve for Cd filtration, discouraging its entry into plant tissues and allowing other minerals and organic substances along with restoring water status. This chapter focuses on how interaction of arbuscular mycorrhizal (AM) fungi with root augments performance of legumes growth and signifies its practical applicability in the Cd polluted arable lands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Alla MH (1999) Nodulation and nitrogen fixation of Lupinus species with Bradyrhizobium (lupin) strains in iron-deficient soil. Biol Fert Soils 28:407–415

    CAS  Google Scholar 

  • Adelekan BA, Abegunde KD (2011) Heavy metals contamination of soil and ground water at automobile mechanic villages in Ibadan Nigeria. Int J Phys Sci 6:1045–1058

    CAS  Google Scholar 

  • Ahmad E, Zaidi A, Khan MS, Oves M (2012) Heavy metal toxicity to symbiotic nitrogen-fixing microorganism and host legumes. In: Zaidi A, Wani PA, Khan MS (eds) Toxicity of heavy metals to legumes and bioremediation. Springer, Wien, pp 29–44. doi:10.1007/978-3-7091-0730-0_9

    Google Scholar 

  • Ahmad SH, Reshi Z, Ahmad J, Iqbal MZ (2005) Morpho-anatomical responses of Trigonella foenum graecum Linn. to induced cadmium and lead stress. J Plant Biol 48:64–84

    CAS  Google Scholar 

  • Aiking HH, Goves H, Riet JV (1985) Detoxification of mercury, cadmium and lead in Klebsiella aerogenes NCTC418 growing in continuous culture. Appl Environ Microbiol 50:1262–1267

    PubMed Central  CAS  PubMed  Google Scholar 

  • Akinola MO, Ekiyoyo TA (2006) Accumulation of lead, cadmium and chromium in some plants cultivated along the bank of river Ribila at Odonla area of Ikorodu, Lagos state. J Environ Biol 27:597–599

    CAS  PubMed  Google Scholar 

  • Arora NK, Khare E, Singh S, Maheshwari DK (2009) Effect of Al and heavy metals on enzymes of nitrogen metabolism of fast and slow growing rhizobia under explanta conditions. World J Microbiol Biotechnol. doi:10.1007/s11274-009-0237-6

    Google Scholar 

  • Audet P, Charest C (2007) Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation. Meta-analytical and conceptual perspectives. Environ Polut 147:609–614

    CAS  Google Scholar 

  • Baccaouch S, Chaoui A, Ferjani EE (1998) Nickel induced oxidative damage and antioxidant responses in Zea mays shoot. Plant Physiol Biochem 36:689–694

    Google Scholar 

  • Baeshin NA, Qari SH (2003) Combined genotoxic and cytotoxic effects of cadmium chloride and carbofuran in root meristems of Vicia faba. Saudi J Bio Sci 10:107–119

    Google Scholar 

  • Bahmani R, Bihamta MR, Habibi D, Forozesh P, Ahmadvand S (2012) Effect of cadmium chloride on growth parameters of different bean genotypes (Phaseolus vulgaris L.). ARPN J Agric Biol Sci 7:35–40

    CAS  Google Scholar 

  • Barea JM, Azcon-Aguilar C (1983) Mycorrhizas and their significance in nodulating nitrogen-fixing plants. Adv Agron 36:1–54

    Google Scholar 

  • Batisani N, Yamal B (2010) Rainfall variability and trends in semi-arid Botswana: implications for climate change adaptation policy. Appl Geogr 30:483–489

    Google Scholar 

  • Bert V, Meerts P, Saumitou-Laprade P, Salis P, Gruber W, Verbruggen N (2003) Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri. Plant Soil 249:9–18

    CAS  Google Scholar 

  • Boominathan R, Doran PM (2003) Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator. Thlaspi caerulescens. Biotechnol Bioeng 83:158–167

    CAS  PubMed  Google Scholar 

  • Boussama N, Ouariti O, Suzuki A, Ghorbel MH (1999) Cd-stress on nitrogen assimilation. J Plant Physiol 155:310–317

    CAS  Google Scholar 

  • Brar SK, Verma V, Surampalli RY, Misra K, Tayagi RD, Meunier N, Blais JF (2006) Bioremediation of hazardous wastes—a review. Pract Period Hazard Toxic Radioactive Waste Manag 10:59–72

    CAS  Google Scholar 

  • Broos K, Beyens H, Smolders E (2005) Survival of rhizobia in soil is sensitive to elevated zinc in the absence of the host plant. Soil Biol Biochem 37:573–579

    CAS  Google Scholar 

  • Calabrese EJ, Baldwin LA (2004) Chemotherapeutics and hormesis. Crit Rev Toxicol 33:215–304

    Google Scholar 

  • Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agric Ecosyst Environ 116:72–84

    Google Scholar 

  • Chaudri AM, Allain CM, Barbosa-jefferson VL, Nicholson FA, Chambers BJ, McGrath SP (2000) A study of the impacts of Zn and Cu on two rhizobial species in soils of a long term field experiment. Plant Soil 22:167–179

    Google Scholar 

  • Chaudri AM, McGrath SP, Giller KE, Reitz E, Suerbeck DR (1993) Enumeration of indigenous Rhizobium leguminosarum biovar. trifolii in soils previously treated with metal contaminated sewage sludge. Soil Biol Biochem 25:301–309

    CAS  Google Scholar 

  • Chen BD, Thu YG, Duan J, Xiao XY, Smith SE (2007) Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Environ Pollut 147:374–380

    CAS  PubMed  Google Scholar 

  • Chen JW, Zhang Q, Li XS, Cao KF (2011) Steady and dynamic photosynthetic responses of seedlings from contrasting successional groups under low-light growth conditions. Physiol Plant 141:84–95

    CAS  PubMed  Google Scholar 

  • Cleveland CC, Townsend AR, Schimel DS et al (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochem Cycles 13:623–645

    CAS  Google Scholar 

  • Clijsters H, Van Assche F (1985) Inhibition of photosynthesis by heavy metals. Photosynth Res 7:31–40

    CAS  PubMed  Google Scholar 

  • Coba de la Peña T, Pueyo JJ (2012) Legumes in the reclamation of marginal soils, from cultivar and inoculant selection to transgenic approaches. Agro Sust Develop 35:65–91

    Google Scholar 

  • Cortez H, Pingarron J, Munoz JA, Ballester A, Blazquez ML, Gonzalez F, Garcia C, Coto O (2010) Bioremediation of soils contaminated with metalliferous mining wastes. In: Plaza G (ed) Trends bioremediation phytoremediation. Research Signpost, Trivandrum, pp 283–299

    Google Scholar 

  • Corticerio S, Pereira S, Lima A, Figueira E (2012) The influence of glutathione on the tolerance of Rhizobium leguminoserum to cadmium. In: Zaidi A, Wani PA, Khan MS (eds) Toxicity of heavy metals to legumes and bioremediation. Springer-Verlag, Wien, pp 89–100

    Google Scholar 

  • Crusius J, Schroth AW, Gasso S, Moy CM, Levy RC, Gatica M (2011) Glacial flour dust storms in the Gulf of Alaska: hydrologic and materiological controls and their importance as a source of bioavailable iron. Geophys Res Lett 38:5

    Google Scholar 

  • Damodharam T, Dinakar N, Nagajyothi PC, Suresh S, Suresh C (2009) Cadmium induced changes on proline, antioxidant enzymes, nitrate and nitrite reductases in Arachis hypogea L. J Environ Biol 30:289–294

    PubMed  Google Scholar 

  • Dewdy RH, Ham GE (1997) Soybean growth and elemental content as influenced by soil amendments of sewage sludge and heavy metals: seedling studies. Agron J 69:300–303

    Google Scholar 

  • Dimitrova I (1993) Studies of grass plants under conditions of industrial pollution with heavy metals and sulfur dioxide. Author’s summary of Ph.D. Dissertation, “P. Hilendarski.” Plovdiv University

    Google Scholar 

  • Dragovic S, Uscumlic M, Radojevic V, Cicmil M (2008) Water quality for vegetable irrigation from the aspect of safety. Ekoloski Pokret Novog Sada, Novi Sad, special edition, II International ECO-Conference “SAFE FOOD,” pp 75–81

    Google Scholar 

  • Drazic G, Mihailović N, Lojić M (2006) Cadmium accumulation in Medicago sativa seedlings treated with salicylic acid. Biol Plant 50:239–244

    CAS  Google Scholar 

  • EEA (2010) European Union emission inventory report 1990-2008 under the UNECE convention on long-range trans-boundary air pollution (LRTAP). Copenhagen, Technical report number 7

    Google Scholar 

  • Elliott HA, Linn JH, Sheilds GA (1989) Role of Fe in extractive decontamination of Pb polluted soils. Hazards Mater Hazards Waste 6:223–229

    CAS  Google Scholar 

  • EMEP/EEA (2009) The EMEP/EEA air pollutant emission inventory guidebook. http://www.eea.europa.eu/publications/emep-eea-emission-inventory-guidebook-2009. Accessed 31 Oct 2014

  • Faizan S, Kausar S, Perveen R (2011) Varietal differences for cadmium-induced seedling mortality, foliar toxicity symptoms, plant growth, proline and nitrate reductase activity in chickpea (Cicer arietinum L.). Biol Med 3:196–206

    CAS  Google Scholar 

  • Fargasova A (1994) Toxicity determinations of plant growth hormones on aquatic alga Scenedesmus quadricauda. Bull Environ Contam Toxicol 52:706–711

    CAS  PubMed  Google Scholar 

  • Fergusson JE, Kim ND (1991) Trace elements in street and house dusts: sources and speciation. Sci Total Environ 100:125–150

    CAS  PubMed  Google Scholar 

  • Friberg L, Elinder C-G, Kjellstrom T, Nordberg GF (eds) (1986) Cadmium and health: a toxicological and epidemiological appraisal, vol. 1. CRC Press, Boca Raton, FL

    Google Scholar 

  • FWPCA (1968) Water quality criteria. Report of the National Technical Advisory Committee to the Secretary of the Interior. Federal Water Pollution Control Administration, Corvallis, OR, pp 32–34

    Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bio-weathering and bioremediation. Mycol Res 111:3–49

    CAS  PubMed  Google Scholar 

  • Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84:13–28

    CAS  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiol 156:609–643

    CAS  Google Scholar 

  • Ganesan V (2012) Rhizoremediation: a pragmatic approach for remediation of heavy metal-contaminated soil. In: Zaidi A, Wani PA, Khan MS (eds) Toxicity of heavy metals to legumes and bioremediation. Springer-Verlag, Wien, pp 147–161

    Google Scholar 

  • Garg N, Aggarwal N (2011) Effects of interaction between cadmium and lead on growth, nitrogen fixation, phytochelatin, and glutathione production in mycorrhizal Cajanus cajan (L.) Millsp. J Plant Growth Regul 30:286–300

    CAS  Google Scholar 

  • George NM (2000) Evaluation on mutagenic effects of the three heavy metals on Vicia faba plants. Cytologia 65:75–82

    CAS  Google Scholar 

  • Gildon A, Tinker PB (1983) Interactions of vesicular-arbuscular mycorrhizal infection and heavy metals in plants. I. The effects of heavy metals on the development of vesicular arbuscular mycorrhizas. New Phytol 95:247–261

    CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    CAS  PubMed  Google Scholar 

  • Hasan SA, Hayat S, Ali B, Ahmad A (2008) 28-homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidant. Environ Poll 151:60–66

    CAS  Google Scholar 

  • Hassan MJ, Shao GS, Zhang GP (2005) Influence of cadmium toxicity on growth and antioxidant enzyme activity in rice cultivars with different grain cadmium accumulation. J Plant Nutr 28:1259–1270

    CAS  Google Scholar 

  • Hayat S, Irfan M, Wani AS, Alyemeni MN, Ahmad A (2012) Salicylic acids: local, systemic or inter-systemic regulators? Plant Signal Behav 7:1–10

    Google Scholar 

  • Heckman JR, Angle JS, Chaney RL (1987) Residual effects of sewage sludge on soybean II. Accumulation of soil and symbiotically fixed nitrogen. J Environ Qual 16:117–124

    Google Scholar 

  • Heggo A, Angle JS, Chaney RL (1990) Effects of vesicular arbuscular mycorrhizal fungi on heavy metal uptake by soybean. Soil Biol Biochem 22:865–869

    CAS  Google Scholar 

  • Hernandez LE, Garate A, Carpena-Ruiz R (1995) The effect of cadmium on symbiotic nitrogen fixation of pea (Pisum sativum) plant grown in perlite and vermiculite. J Plant Nutr 18:287–303

    CAS  Google Scholar 

  • Hirsch PR, Jones MJ, McGrath SP, Giller KE (1993) Heavy metals from past applications of sewage sludge decrease the genetic diversity of Rhizobium leguminosarum biovar. trifolii populations. Soil Biol Biochem 25:1485–1490

    Google Scholar 

  • Irfan M, Hayat S, Ahmad A, Alyemeni MN (2013) Soil cadmium enrichment: allocation and plant physiological manifestations. Saudi J Biol Sci 20:1–10

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jamal A, Ayub N, Usman Mand Khan AG (2002) Arbuscular mycorrhizal fungi enhance zinc and nickel uptake from contaminated soil by bean and lentil. Int J Phytoremed 4:205–221

    CAS  Google Scholar 

  • Jikai R, Qinglang C, Lingzhi C, Rongzhuang H, Yiqun Y, Fanzhi K, Yougui M (1982) The soil contaminated by cadmium and crop. Chinese J Plant Ecol 6:131–141

    Google Scholar 

  • Joner EJ, Briones R, Leyval C (2000a) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 222:227–234

    Google Scholar 

  • Joner EJ, Ravnskov S, Jakobsen I (2000b) Arbuscular mycorrhizal phosphate transport under monoxenic conditions using radiolabeled inorganic and organic phosphate. Biotechnol Lett 22:1705–1708

    CAS  Google Scholar 

  • Kabata-Pendias A (2011) Trace elements in soils and plants, 3rd edn. CRC Press LLC, Boca Raton

    Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace element in soils and plant. CRC Press, London

    Google Scholar 

  • Karimi A, Habib K, Mohzan S, Mirhassan RS (2011) Arbuscular mycorrhizal fungi and heavy metal contaminated soils. Afr J Microbiol Res 5:1571–1576

    CAS  Google Scholar 

  • Karpiscak MM, Whiteakeriola JF, Foster KE (2001) Nutrient and heavy meal uptake and storage in constructed wetland systems in Arizona. Water Sci Technol 44:455–462

    CAS  PubMed  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Ahemad M, Oves M (2009a) Functional diversity among plant growth-promoting rhizobacteria. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Berlin, pp 105–132

    Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009b) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Google Scholar 

  • Khan S, Farooq R, Shahbaz S, Khan MA, Sadique M (2009c) Health risk assessment of heavy metals for population via consumption of vegetables. World Appl Sci J 6:1602–1606

    CAS  Google Scholar 

  • Kimball BA, Runkel RL, Walton-Day K (2010) An approach to quantify sources, seasonal change, and biogeochemical processes affecting metalloading: facilitating decisions for remediation of mine drainage. Appl Geochem 25:728–740

    CAS  Google Scholar 

  • Kroopnick PM (1994) Vapor abatement cost analysis methodology for calculating life cycle costs for hydrocarbon vapor extracted during soil venting. In: Wise DL, Trantolo DJ (eds) Remediation of hazardous wastes. Marcel Dekker, New York, pp 779–790

    Google Scholar 

  • Krujatz F, Haarstrick A, Nortemann B, Greis T (2011) Assessing the toxic effects of nickel, cadmium and EDTA on growth of the plant growth-promoting rhizobacterium Pseudomonas brassicacearum. Water Air Soil Pollut. doi:10.1007/s11270-011-09440

    Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant microbe interaction. Mol Plant Microbe Interact 17:6–15

    CAS  PubMed  Google Scholar 

  • Kumar A (2012) Role of plant growth promoting rhizobacteria in the management of cadmium contaminated soil. In: Zaidi A, Wani PA, Khan MS (eds) Toxicity of heavy metals to legumes and bioremediation. Springer, Wien, pp 163–198

    Google Scholar 

  • Kumar CL, Kumar SS (1999) Photosynthetic activities of Pisum sativum seedlings grown in presence of cadmium. Plant Physiol Biochem 37:297–303

    Google Scholar 

  • Kumar G, Rai P (2007) Genotoxic potential of mercury and cadmium in soybean. Turk J Biol 31:13–15

    CAS  Google Scholar 

  • Kumari M, Sinhal VK, Srivastava A, Singh VP (2011) Zinc alleviates cadmium induced toxicity in Vigna radiata (L.) Wilczek. J Phytol 3:43–46

    CAS  Google Scholar 

  • Lachman J, Dudjak J, Miholová D, Kolihová D, Pivec V (2004) Effect of cadmium stress on the uptake and distribution of microelements copper and zinc in plant parts of barley (Hordeum sativum L.). Sci Agric Biochem 35:81–86

    Google Scholar 

  • Lee S, Leustek T (1999) The effect of cadmium on sulfate assimilation enzymes in Brassica juncea. Plant Sci 141:201–207

    CAS  Google Scholar 

  • Leita L, De Nobili M, Mondini C, Baca-Garcia MT (1993) Response of leguminaseae to cadmium exposure. J Plant Nutr 16:2001–2012

    CAS  Google Scholar 

  • Leyval C, Joner EJ, del Val C, Haselwandter K (2002) Potential of arbuscular mycorrhizal fungi for bioremediation. In: Gianinazzi S, Schuepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhauser, Switzerland, pp 175–186

    Google Scholar 

  • Liu L, Zhang Q, Hu L, Tang J, Xu L, Yang X, Yong JWH, Chen X (2012) Legumes can increase cadmium contamination in neighboring crops. PLoS One 7(8):e42944

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Y, Zhuang P, Li Z, Zou B, Wang G, Li N, Qiu J (2013) Cadmium accumulation in maize monoculture and intercropping with six legume species. Acta Agric Scand 63:376–382

    CAS  Google Scholar 

  • Ma Y, Dickinson NM, Wong MH (2006) Beneficial effects of earthworms and arbuscular mycorrhizal fungi on establishment of leguminous tress on Pb/Zn mine tailings. Soil Biol Biochem 38:1403–1412

    CAS  Google Scholar 

  • Makoi JHJR, Chimphango SBM, Dakora FD (2009) Effect of legume plant density and mixed culture on symbiotic N2 fixation in five cowpea genotypes in South Africa. Symbiosis 48:57–67

    CAS  Google Scholar 

  • Malcova R, Vosatka M, Gryndler M (2003) Effects of inoculation with Glomus intraradices on lead uptake by Zea mays L. and Agrostis capillaris L. Appl Soil Ecol 23:255–267

    Google Scholar 

  • Mandal SM, Bhattaccharyya R (2012) Rhizobium-Legumes symbiosis: a model system for the recovery of metal-contaminated agricultural land. In: Zaidi A, Wani PA, Khan MS (eds) Toxicity of heavy metals to legumes and bioremediation. Springer, Wien, pp 115–128

    Google Scholar 

  • Mandal SS, Rabindranath R (2012) Rhizobium-Legume symbiosis: a model system for the recovery of metal-contaminated agricultural land. In: Zaidi A, Wani PA, Khan MS (eds) Toxicity of heavy metals to legumes and bioremediation. Springer, Wien, pp 115–128

    Google Scholar 

  • Marshner P (2012) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic Press, London, UK

    Google Scholar 

  • Matsumoto ST, Marin-Morales MA (2004) Mutagenic potential evaluation of the water of a river that receives tannery effluent using the Allium cepa test system. Cytologia 69:399–408

    Google Scholar 

  • Mohan BS, Hosetti BB (2006) Phytotoxicity of cadmium on the physiological dynamics of Salvinia natans L. grown in macrophyte ponds. J Environ Biol 27:701–704

    CAS  PubMed  Google Scholar 

  • Muleta D (2010) Legume response to arbuscular mycorrhizal fungi inoculation in sustainable agriculture. In: Khan MS, Zaidi A, Mussarrat J (eds) Microbes for legume improvement. Springer, Wien, pp 293–323

    Google Scholar 

  • Muleta D, Woyessa D (2012) Importance of arbuscular mycorrhizal fungi in legume production under heavy metal contaminated sites. In: Zaidi A, Wani PA, Khan MS (eds) Toxicity of heavy metals to legumes and bioremediation. Springer, Wien, pp 219–241

    Google Scholar 

  • Na G, Salt DE (2011) The role of sulfur assimilation and sulfur-containing compounds in trace element homeostasis in plants. Environ Exp Bot 72:18–25

    CAS  Google Scholar 

  • Nellessen JE, Fletcher JS (1993) Assessment of published literature pertaining to the uptake/accumulation, translocation, adhesion and biotransformation of organic chemicals by vascular plants. Environ Toxicol Chem 12:2045–2052

    CAS  Google Scholar 

  • Obata H, Umebayashi M (1997) Effects of cadmium on mineral nutrient concentrations in plants differing in tolerance for cadmium. J Plant Nutr 20:97–105

    CAS  Google Scholar 

  • Overmyer K, Brosché M, Kangasjarvi J (2003) Reactive oxygen species and hormonal control of cell death. Trends Plant Sci 8:335–342

    CAS  PubMed  Google Scholar 

  • Pandey P, Tripathi AK (2011) Effect of heavy metals on morphological and biochemical characteristics of Albizia procera (Roxb.) Benyh. seedlings. Int J Environ Sci 5:1009–1018

    Google Scholar 

  • Parker R (1994) Environmental restoration technologies. EMIAA Yearbook, pp 169–171

    Google Scholar 

  • Paudyal SP, Aryal RP, Chauhan SVS, Maheshwari DK (2007) Effect of heavy metals on growth of Rhizobium strains and symbiotic efficiency of two species of tropical legumes. Sci World 5:5

    Google Scholar 

  • Perveen R, Faizan S, Tiyagi SA, Kausar S (2011) Performance of Cd stress condition on growth and productivity parameters of Trigonella foenum-graecum L. World J Agric Sci 7:607–612

    CAS  Google Scholar 

  • Pollard AJ, Powell KD, Harper FA, Smith JAC (2002) The genetic basis of metal hyperaccumulation in plants. Critical Rev Plant Sci 21:539–566

    CAS  Google Scholar 

  • Poschenrieder C, Barcelo J (1999) Water relations in heavy metal stressed plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Springer, Heidelberg, pp 207–230

    Google Scholar 

  • Prasad MNV (1995) Cadmium toxicity and tolerance in vascular plants. Environ Exp Bot 35:525–545

    CAS  Google Scholar 

  • Ramel C (1973) The effect of metal compounds on chromosome segregation. Mutat Res Lett 21:45–46

    Google Scholar 

  • Rana A, Ahmad M (2002) Heavy metal toxicity in legume microsymbiont system. J Plant Nutr 25:369–386

    Google Scholar 

  • Rather GM (2013) Studies of response of single and multi-plant species systems to heavy metal contamination and its significance for community characteristics. Ph.D. Thesis. Aligarh Muslim University, Aligarh.

    Google Scholar 

  • Reichman SMA (2007) The potential use of the legume-Rhizobium symbiosis for the remediation of arsenic contaminated sites. Soil Biol 39:2587–2593

    CAS  Google Scholar 

  • Rivera-Becerril F, Catherine C, Katarzyna T, Caussanel J-P, Belimov AA, Gianinazzi S, Strasser RJ, Gizninazzi-Pearson V (2002) Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycrorrhiza in three Pisum sativum L. genotypes. J Exp Bot 53:1177–1185

    CAS  PubMed  Google Scholar 

  • Ryan JA, Pahren HR, Lucas JB (1982) Controlling cadmium in the human food chain: a review and rationale based on health effects. Environ Res 28:251–302

    CAS  PubMed  Google Scholar 

  • Salt DE, Blaylock M, Kumar PBAN, Dushenkov V, Ensley BD, Chet L, Raskin L (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnol 13:468–474

    CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, del Rio LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    CAS  PubMed  Google Scholar 

  • Sandmann G, Bflger P (1980) Copper mediated lipid peroxidation processes in photosynthetic membranes. Plant Physiol 66:797–800

    PubMed Central  CAS  PubMed  Google Scholar 

  • Saraswat S, Rai JPN (2011) Prospective application of Leucaena leucocephala for phytoextraction of Cd and Zn and nitrogen fixation in metal polluted soils. Int J Phytoremed 13:271–288

    CAS  Google Scholar 

  • Sarwar N, Saifullah MSS, Zia MH, Naeem A, Bibi S, Farid G (2010) Role of mineral nutrition in minimizing cadmium accumulation by plants. J Sci Food Agric 90:925–937

    CAS  PubMed  Google Scholar 

  • Sepehri M, Rastin NS, Rahmani HA, Alikhani H (2006) Effects of soil pollution by cadmium on nodulation and nitrogen fixation ability if native strains of Sinorhizobium meliloti. J Sci Technol Agric Nat Res 10:153–163

    CAS  Google Scholar 

  • Shamsi IH, Wei K, Zhang GP, Jilani GH, Hasan MJ (2008) Interactive effects of cadmium and aluminium on growth and antioxidative enzymes in soybean. Biol Plant 52:165–169

    CAS  Google Scholar 

  • Sharma RK, Agrawal M, Marshall FM (2009) Heavy metals in vegetables collected from production and market sites of a tropical urban area of India. Food Chem Toxicol 47:583–591

    CAS  PubMed  Google Scholar 

  • Shetty KG, Hetrick BA, Schwab AP (1994) Effects of mycorrhizae and other soil microbes on revegetation of heavy metal contaminated mine spoil. Environ Poll 86:181–188

    CAS  Google Scholar 

  • Shukla V, Dhankhar M, Prakash J, Sastry KV (2007) Bioaccumulation of Zn, Cu and Cd in Channa punctatus. J Environ Biol 28:395–397

    CAS  PubMed  Google Scholar 

  • Siedlecka A, Krupa Z (1999) Cd/Fe interaction in higher plants—its consequences for the photosynthethic apparatus. Photosynthetica 36:321–331

    CAS  Google Scholar 

  • Silver S (1996) Bacterial resistances to toxic metal ions—a review. Gene 179:9–19

    CAS  PubMed  Google Scholar 

  • Sofia C, Sofia P, Ana L, Etelvina F (2012) The influence of glutathione on the tolerance of Rhizobium leguminosarum to cadmium. In: Zaidi A, Wani PA, Khan MS (eds) Toxicity of heavy metals to legumes and bioremediation. Springer, Wien, pp 89–100

    Google Scholar 

  • Stobart AK, Griffiths WT, Ameen-Bukhari I, Sherwood RP (1985) The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley. Physiol Plant 63:293–298

    CAS  Google Scholar 

  • Swandulla D, Armstrong CM (1989) Calcium channel block by cadmium in chicken sensory neurons. Proc Natl Acad Sci U S A 86:1736–1740

    PubMed Central  CAS  PubMed  Google Scholar 

  • Takas T (2012) Site-specific optimization of arbuscular mycorrhizal fungi mediated phytoremediation. In: Zaidi A, Wani PA, Khan MS (eds) Toxicity of heavy metals to legumes and bioremediation. Springer, Wien, pp 179–202

    Google Scholar 

  • Tantrey MS, Agnihotri RK (2010) Chlorophyll and proline content of gram (Cicer arietinum L.) under cadmium and mercury treatments. Res J Agri Sci 1:119–122

    Google Scholar 

  • Terry N (1981) An analysis of the growth responses of Beta vulgaris L. to phytotoxic trace elements. II. Chromium. Final report to the Kearney foundation of soil science. July 1975–June 1980

    Google Scholar 

  • Tonin C, Vandennkoornhuyse P, Joner EJ, Straczek J, Leyval C (2001) Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metal uptake by clover. Mycorrhiza 10:161–168

    CAS  Google Scholar 

  • Velaiappan A, Melchias G, Kasinathan P (2002) Effect of heavy metal toxicity on the nodulation pattern of legume cultivars. J Ecotoxicol Environ Monitor 12:17–20

    Google Scholar 

  • Verma S, Dubey RS (2001) Effect of cadmium on soluble sugars and enzymes of their metabolism in rice. Biol Plant 44:117–123

    CAS  Google Scholar 

  • Vijayaragavan M, Prabhahar C, Sureshkumar J, Natarajan A, Vijayarengan P, Sharavanan S (2011) Toxic effect of cadmium on seed germination, growth and biochemical contents of cowpea (Vigna unguiculata L.) plants. Int Multidisc Res J 1:01–06

    CAS  Google Scholar 

  • Vivas A, Marulanda A, Ruiz-Lozano JM, Barea JM, Azcon R (2003a) Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG induced drought stress. Mycorrhiza 13:249–256

    PubMed  Google Scholar 

  • Vivas A, Voros I, Biro B, Campos E, Barea JM, Azcon R (2003b) Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacillus brevis isolated from cadmium polluted soil under increasing cadmium levels. Environ Pollut 126:179–189

    CAS  PubMed  Google Scholar 

  • Von Rosen G (1954) Mutation induced by the action of metal ions in Pisum sativum. Hereditas 43:644–650

    Google Scholar 

  • Vyas J, Puranik RM (1993) Inhibition of nitrate reductase activity by mercury in bean leaf segments. Ind J Plant Physiol 36:57–60

    CAS  Google Scholar 

  • Wahid A, Ghani A, Ali I, Ashraf MY (2007) Effect of cadmium on carbon and nitrogen assimilation in shoots of mungbean [Vigna radiata (L.) Wilczek] seedlings. J Agron Crop Sci 193:357–365

    CAS  Google Scholar 

  • Wani PA, Khan MS (2010) Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food Chem Toxicol 48:3262–3267

    CAS  PubMed  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007a) Cadmium, chromium and copper in green gram plants. Agron Sustain Dev 27:145–153

    CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007b) Impact of heavy metal toxicity on plant growth, symbiosis, seed yield and nitrogen and metal uptake in chickpea. Aus J Exp Agric 47:712–720

    CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008a) Effect of metal-tolerant plant growth-promoting Rhizobium on the performance of pea grown in metal-amended soil. Arch Environ Contam Toxicol 55:33–42

    CAS  PubMed  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008b) Chromium reducing and plant growth promoting Mesorhizobium improves chickpea growth in chromium amended soil. Biotechnol Lett 30:159–163

    CAS  PubMed  Google Scholar 

  • Winder C (1989) Reproductive and chromosomal effect of occupational exposure to lead on the male. Reprod Toxicol 3:221–223

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubina Perveen M.Phil. Ph.D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Perveen, R., Faizan, S., Ansari, A.A. (2015). Phytoremediation Using Leguminous Plants: Managing Cadmium Stress with Applications of Arbuscular Mycorrhiza (AM) Fungi. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-10969-5_11

Download citation

Publish with us

Policies and ethics