Skip to main content

Textile Dyes Degradation: A Microbial Approach for Biodegradation of Pollutants

  • Chapter
  • First Online:
Microbial Degradation of Synthetic Dyes in Wastewaters

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

Abstract

Rapid industrialization has given rise to various unwanted elements that accumulated in the biosphere up to toxic levels to degrade the natural environment. Scientific developments are considered as key factors for progress of both developing and under developed countries, but unfortunately, most of the industries in these countries do not have proper waste treatment facilities and releasing a large quantity of effluents. A majority of xenobiotics (either untreated or partially treated) released from industries are mixed up with the natural water bodies and to the soil of the biosphere. Untreated or partially treated textile effluents are highly toxic, as they contain a large number of toxic chemicals and heavy metals. The problem of water pollution due to the discharge of industrial wastewater into natural water bodies was witnessed by western countries in 19th century and also in India after independence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiquel F, Herraro FJ (1948) The action of dyes on the development of Aspergillus niger and Aspergillus flavus. Arch Farm Bioquim Tucumdn 4:149–180

    Google Scholar 

  • Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40:997–1026

    Article  Google Scholar 

  • Asgher M, Bhatti HN, Shah SAH, Javaid AM, Legge RL (2007) Decolorization potential of mixed microbial consortia for reactive and disperse textile dyestuffs. Biodegradation 18:311–316

    Article  Google Scholar 

  • Bajpai P (1999) Application of enzymes in the pulp and paper industry. Biotechnol Prog 57:147–157

    Article  Google Scholar 

  • Bakshi DK, Gupta KG, Sharma P (1999) Enhanced biodecolorization of synthetic textile dye effluent by Phanerochaete chrysosporium under improved culture conditions. World J Microbiol Biotechnol 15:507–509

    Article  Google Scholar 

  • Banat IM, Nigam P, Singh D, Marchant R (1996) Microbial decolorization of textile-dye-containing effluents: A review. Bioresour Technol 58:217–227

    Article  Google Scholar 

  • Basu SN, Whitaker DR (1953) Inhibition and stimulation of the cellulase of Myrothecium verrucaria. Arch Biochem Biophys 42:12–24

    Article  Google Scholar 

  • Bavendamm W (1928) Uber das vorkommen und den nachweis von oxydasen bei holzzerstorenden pilzen. Z Pflanzenkr Pflanzenschutz 38:257–276

    Google Scholar 

  • Bennett DJ, Dence CW, Kung FL, Luner P, Ota M (1971) The mechanism of color removal in the treatment of spent bleaching liquor with lime. Tappi 54(12):2019–2026

    Google Scholar 

  • Berka RM, Schneider P, Golightly EJ, Brown SH, Madden M, Brown KM, Halkier T, Mondorf K, Xu F (1997) Characterization of the gene encoding an extracellular laccase of Myceliophthora thermophila and analysis of the recombinant enzyme expressed in Aspergillus oryzae. Appl Environ Microbiol 63:3151–3157

    Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    Article  Google Scholar 

  • Brown JP (1981) Reduction of polymeric azo and nitro dyes by intestinal bacteria. Appl Environ Microbiol 41(5):1283–1286

    Google Scholar 

  • Bumpus JA (1989) Biodegradation of polycyclic aromatic hydrocarbons by Phanerocheate chrysosporium. Appl Envioron Microbiol 55:154–158

    Google Scholar 

  • Bumpus JA, Brock BJ (1988) Biodegradation of crystal violet by the white-rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 54:1143–1150

    Google Scholar 

  • Bumpus JA, Aust SD (1986) Biodegradation of environmental pollutants by the white-rot fungus Phanerocheate chrysosporium. Involvement of lignin-degrading system. Bioassay 6:166–170

    Article  Google Scholar 

  • Cammarota MC, Santa-Anna GL Jr (1992) Decolorization of kraft bleach plant E1 stage effluent in a fungal bioreactor. Environ Technol 13:65–71

    Article  Google Scholar 

  • Cha CJ, Doerge RD, Cerniglia CE (2001) Biotransformation of malachite green by the fungus Cunninghamella elegans. Appl Environ Microbiol 67(9):4358–4360

    Article  Google Scholar 

  • Chivukula M, Reganathan V (1995) Phenolic azo dyes oxidation by laccase from Pyricularia oryzae. Appl Environ Microbiol 61:4374–4377

    Google Scholar 

  • Chung KT, Stevens SE, Cerniglia CE (1992) The reduction of azo dyes by the intestinal microflora. Crit Rev Microbiol 18(3):175–190

    Article  Google Scholar 

  • Conn WT (1935) Preservation of cellulose materials. US Patent 2,018,659

    Google Scholar 

  • Couto SR (2009) Dye removal by immobilised fungi. Biotech Adv 27:227–235

    Article  Google Scholar 

  • Cripps C, Bumpus JA, Aust SD (1990) Biodegradation of azo and heterocyclic dyes by Phanerocheate chrysosporium. Appl Environ Microbiol 56:1114–1118

    Google Scholar 

  • Davidson RW, Campbell WA, Blaisdell DJ (1938) Differentiation of wood-decaying fungi by their reactions on gallic or tannic acid medium. J Agric Res 57:683–695

    Google Scholar 

  • di Marco A, Boretti G (1950) On the complex formed by streptomycin and basic dyes with ribonucleic acid. Interference of salts. Enzymologia 14:141–152

    Google Scholar 

  • Dias A (2000) Biorremediação de areas afetadas por resíduos sólidos tóxicos. In: Sisinno CLS, Oliveira RM (eds) Resíduos sólidos, ambiente e saúde: uma visão multidisciplinary orgs. Rio de Janeiro, pp 79–98

    Google Scholar 

  • Dion WM, Lord KA (1944) A comparison of the toxicity of certain dyestuffs to the conidia of Fusarium culmorurm. Ann Appl Biol 31:221–231

    Article  Google Scholar 

  • Fischer E (1957) Relation between chemical structure and bacteriostatic action in di- and triphenylmethane dyes. Arzneimittel-Forsch 7:192–194

    Google Scholar 

  • Freitag M, Morrell JJ (1992) Decolorization of the polymeric dye poly R-478 by wood-inhabiting fungi. Can J Microbiol 38:811–822

    Article  Google Scholar 

  • Gibson DT, Subramanian V (1984) Microbial degradation of aromatic hydrocarbons. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, Inc., New York, pp 181–252

    Google Scholar 

  • Glenn JK, Gold MH (1983) Decolorization of several polymeric dyes by the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 45:1741–1747

    Google Scholar 

  • Gold MH, Glenn JK, Alic M (1988) Use of polymeric dyes in lignin biodegration assays. Methods Enzyme Mol 161:74–78

    Article  Google Scholar 

  • Goldacre RJ, Phillips JN (1949) The ionization of basic triphenylmethane dyes. J Chem Soc 1724–1732

    Google Scholar 

  • Gunner HB, Zuckman BM (1968) Degradation of diazinon by synergistic microbial action. Nature (London) 217:1183–1184

    Article  Google Scholar 

  • Hammel KT, Wen ZG, Benita G, Mark AM (1992) Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium. Appl Envion Microbiol 58:1832–1838

    Google Scholar 

  • Heinfling A, Bergbauer M, Szewzyk U (1997) Biodegradation of azo and phthalocyanine dyes by Trametes versicolour and Bjerkandera adusta. Appl Microbiol Biotechnol 48:261–266

    Article  Google Scholar 

  • Idaka E, Ogawa T, Horitsu H (1987) Reductive metabolism of aminobenzene by Pseudomonas cepacia. Bull Environ Contam Toxicol 39:100–107

    Article  Google Scholar 

  • Jadhav JP, Phugare SS, Dhanve RS, Jadhav SB (2010) Rapid biodegradation and decolorization of Direct Orange 39 (Orange TGLL) by an isolated bacterium Pseudomonas aeruginosa strain BCH. Biodegradation 21:453–463

    Article  Google Scholar 

  • Kaarik A (1965) The identification of the mycelia of wood-decaying fungi by their oxidation reactions with phenolic compounds. Stud For Suec 31:1–80

    Google Scholar 

  • Machado KMG, Compart LCA, Morais RO, Rosa LH, Santos MH (2006) Biodegradation of reactive textile dyes by Basidiomycetous fungi from Brazilian Ecosystems. Brazilian J Microbiol 37:481–487

    Article  Google Scholar 

  • Kim SJ, Shoda M (1999) Purification and characterization of a novel peroxidase from Geotrichum candidum Dec. 1 involved in decolorization of dyes. Appl Environ Microbiol 65:1029–1035

    Google Scholar 

  • Kim SJ, Ishikawa K, Hirai M, Shoda M (1996) Characteristic of a newly isolated fungus, Geotrichum candidum Dec 1, which decolorizes various dyes. J Ferment Bioeng 79:601–607

    Article  Google Scholar 

  • Knapp JS, Newby PS, Reece LP (1995) Decolorization of dyes by wood-roting basidiomycete fungi. Enzyme Microbial Technol 17:664–668

    Article  Google Scholar 

  • Kulla HG, Klausener F, Meyer U, Ludeke B, Leisinger T (1983) Interference of aromatic sulfo groups in microbial degradation of azo dyes Orange I and Orange II. Arch Microbiol 135:1–7

    Article  Google Scholar 

  • Kunz A, Peralta-Zamora P, Moraes SG, Dúran N (2002) Novas tendências no tratamento de efluentes têxteis. Quim Nova 25(1):78–82

    Article  Google Scholar 

  • Leatham GF, Kirk TK (1983) Regulation of ligninolytic activity by nutrient nitrogen in white rot basidiomycetes. FEMS Microbiol Lett 16:65–67

    Article  Google Scholar 

  • Mayer AM, Staples RC (2002) Laccase: new function for an old enzyme. Phytochemistry 60:551–565

    Article  Google Scholar 

  • Maynard CW Jr (1983) Dye application, manufacture of dye intermediates and dyes. In: Kent JA (ed), Riegel’s handbook of industrial chemistry Van Nostrand Reinhold, New York, pp 809–861

    Google Scholar 

  • Meyer U (1981) Biodegradation of synthetic organic colorants. In: Leisinger T, Cook AM, Nuesch J, Hutter R (eds) Microbial degradation of xenobiotics and recalcitrant compounds. Academic press, London, pp 371–385

    Google Scholar 

  • McCann J, Ames BN (1975) Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals: discussion. Proc Natl Acad Sci USA 73:950–954

    Article  Google Scholar 

  • Michaelis L (1947) The nature of the interaction of nucleic acids and nuclei with basic dyestuffs. Cold Spring Harbor Symp Quant Biol 12:131–142

    Article  Google Scholar 

  • Michaelis L (1950) Reversible polymerization and molecular aggregation. J Phys Colloid Chem 54:1–17

    Article  Google Scholar 

  • Michaelis L, Granick S (1945) Metachromasy of basic dyestuffs. J Am Chem Soc 67:1212–1219

    Article  Google Scholar 

  • Mietzsch F (1936) Behavior of certain dyes and chemotherapeutics on the introduction of neutral substituents. Med Chem Abhandl Forschungsstiitten IG Farbenind 3:348–356

    Google Scholar 

  • Nascimento C, Magalhães DP, Brandão M, Santos AB, Chame M, Baptista D, Nishikawa M, Silva M (2011) Degradation and detoxification of three textile azo dyes by mixed fungal cultures from semi-arid region of Brazilian Northeast. Braz Arch Biol Technol 54(3):621–628

    Article  Google Scholar 

  • Neelambari V, Maharani V, Vijayalakshmi S, Balasubramanian T (2013) Degradation and detoxification of reactive azo dyes by native bacterial communities. Chemosphere 7(20):2274–2282

    Google Scholar 

  • Neuberg C, Roberts IS (1949) Remarkable properties of nucleic acids and nucleotides. Arch Biochem 20:185–210

    Google Scholar 

  • Niku-Paavola ML, Karhunen E, Kantelinen A, Viikari L, Lundell T, Hatakka A (1990) The effect of culture conditions on the production of lignin modifying enzymes by the white-rot fungus Phlebia radiata. J Biotechnol 13:211–221

    Article  Google Scholar 

  • Nilsson T (1988) Defining fungal decay types—final proposal. International research group on wood preservation, Stockholm, Sweden. Document IRG/WP/1355

    Google Scholar 

  • Nozaki K, Beh CH, Mizuno M, Isobe T, Shiroishi M, Kanda T, Amano Y (2008) Screening and investigation of dye decolorization activities of Basidiomycetes. J Biosci Bioeng 105:69–72

    Article  Google Scholar 

  • Ollikka P, Alhonmaki K, Leppanen VM, Glumoff T, Raijola T, Suominen I (1993) Decolorization of azo, triphenylmethane, heterocyclic, and polymeric dyes by lignin peroxidase isoenzymes from Phanerochaete chrysosporium. Appl Environ Microbiol 59:4010–4016

    Google Scholar 

  • Parshetti G, Kalme S, Saratale G, Govindwar S (2006) Biodegradation of malachite green by Kocuria rosea MTCC 1532. Acta Chim Slov 53:492–498

    Google Scholar 

  • Pasti-Grigsby MB, Paszczynski A, Goszczynski S, Crawford DL, Crawford RL (1992) Influence of aromatic substitution patterns on azo dye degradation by Streptomyces sp. and Phanerochaete chrysosporium. Appl Environ Microbiol 58:3605–3613

    Google Scholar 

  • Paszczynski A, Pasty-Grigsby MB, Goszczynski S, Crawford RL, Crawford DL (1992) Mineralization of sulfonated azo dyes and sulfanilic acid by P. chrysosporium and Streptomyces chromofuscus. Appl Environ Microbiol 58:3598–3604

    Google Scholar 

  • Paszczynski A, Crowford RL (1991) Degradation of azo compounds by ligninase from Phanerocheate chrysosporium: involvement of veratry alcohol. Biochem Biophys Res Commun 178:1056–1063

    Article  Google Scholar 

  • Rafii F, Franklin W, Cerniglia CE (1990) Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora. Appl Environ Microbiol 56:2146–2151

    Google Scholar 

  • Ramaswamy R (2003) Prevention the better cure. In: The Hindu an article in Insight on August 24, p 14

    Google Scholar 

  • Record E, Asther M, Sigoillot C, Pages S (2003) Overproduction of the Aspergillus niger feruloyl esterase for pulp bleaching application. Appl Microbiol Biotechnol 62:349–355

    Article  Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255

    Article  Google Scholar 

  • Roushdy MM, Abdel-Shakour EH (2011) Potential biotechnological application of lignin peroxidase produced by Cunninghamella elegans in the decolorization and detoxification of Malachite Green dye. New York Sci J 4(8):80–88

    Google Scholar 

  • Ruttimann-Johnson C, Salas L, Vicuna R, Kirk TK (1993) Extracellular enzyme production and synthetic lignin mineralization by Ceriporiopsis subvermispora. Appl Environ Microbiol 59:1792–1797

    Google Scholar 

  • Saranraj P, Sumathi V, Reetha D, Stella D (2010) Fungal decolorization of direct azo dyes and biodegradation of textile dye effluent. J Ecobiotechnol 2(7):12–16

    Google Scholar 

  • Selvam K (2000) Biotechnological application of some white-rot fungi Fomes lividus, Thelephora sp. and Trametes versicolour. Ph.D. thesis. Bharathiar University, India

    Google Scholar 

  • Seong JK, Kenichi I, Mitsuyo H, Makoto S (1995) Characteristics of newly isolated fungus, Geotrichum candidum Dec 1, which decolorizes various dyes. J Ferment Bioengine 79(6):601–607

    Article  Google Scholar 

  • Singh L, Singh VP (2012) Microbial decolorization of textile dyes by the fungus Trichoderma harzianum. J Pure Appl Microbiol 6(4):1829–1833

    Google Scholar 

  • Singh L, Singh VP (2010a) Microbial degradation and decolorization of dyes in semi-solid medium by the fungus—Trichoderma harzianum. Environ We Int J Sci Tech 5(3):147–153

    Google Scholar 

  • Singh L, Singh VP (2010b) Biodegradation of textiles dyes, bromophenol blue and congo red by fungus—Aspergillus flavus. Environ We Int J Sci Tech 5(4):235–242

    Google Scholar 

  • Singh L, Sirohi A, Singh VP (2007) Effect of dyes on the growth of Trichoderma harzianum during biodegradation, oral presentation and abstract published. In: International conference on future challenges to environmental scientists on issues of energy, water and human health, Jamia Hamdard University, New Delhi, India

    Google Scholar 

  • Spadaro JT, Gold MH, Renganathan V (1992) Degradation of azo dyes by the lignin-degrading fungus Phanerochaete chrysosporium. Appl Environ Microbiol 58:2397–2401

    Google Scholar 

  • Stearn AE, Stearn EW (1924) The chemical mechanism of bacterial behavior, III. The problem of bacteriostasis. J Bacteriol 9:491–510

    Google Scholar 

  • Steiner RF, Beers RF Jr (1958) Spectral changes accompanying binding of acridine orange by polyadenylic acid. Science 127:335–336

    Article  Google Scholar 

  • Susan CD (1982). Dye History from 2600 BC to the 20th Century, written for a Seminar presented in Seattle, Washington at Convergence 1982, a bi-annual gathering of weavers, dyers and spinners at http://www.straw.com/sig/dyehist.html

  • Swamy J, Ramsay JA (1999) Effects of Mn2+ and NH4 + concentrations on laccase and manganese peroxidase production and amaranth decoloration by Trametes versicolour. Appl Microbiol Biotechnol 51:391–396

    Article  Google Scholar 

  • Vyas BRM, Molitoris HP (1995) Involvement of an extracellular H2O2-dependent ligninolytic activity of the white-rot fungus Pleurotus ostrus in the decolorization of remazol brilliant blue R. Appl Environ Microbiol 61:3919–3927

    Google Scholar 

  • Weaver JW, Jeroski EB, Goldstein IS (1959) Toxicity of dyes and related compounds to wood-destroying fungi. Appl Microbiol 7(3):145–149

    Google Scholar 

  • Wilkolazka AJ, Kochnanska RJ, Malarczy KE, Wardas W, Leonowicz A (2002) Fungi and their ability to decolorize azo and anthraquinonic dyes. Enzyme Microbial Technol 30:566–572

    Article  Google Scholar 

  • Won RR, Seong HS, Moon YJ, Yeong JJ, Kwang KO, Moo HC (2000) Biodegradation of pentachlorophenol by white rot fungi under ligninolytic and non-ligninolytic conditions. Biotechnol Bioprocess Eng 5:211–214

    Article  Google Scholar 

  • Wong YX, Yu J (1999) Laccase-catalyzed decolorization of synthetic dyes. Water Res 33:3512–3520

    Article  Google Scholar 

  • Yesilada O (1995) Decolorization of crystal violet by fungi. World J Microbiol Biotechnol 11:601–602

    Article  Google Scholar 

  • Yever DS, Del Carmen Overjero M, Xu F, Nelson BA, Brown KM, Halkier T, Bernauer S, Brown SH, Kauppinen S (1991) Molecular characterization of laccase genes from basidiomycete Coprinus cinereus and heterologous expression of the laccase Lec 1. Appl Environ Microbiol 65:4943–4948

    Google Scholar 

  • Young L, Yu JT (1997) Ligninase-catalysed decolorization of synthetie dyes. Water Res 31:1187–1193

    Article  Google Scholar 

  • Zollinger H (1987) Color chemistry synthesis, property and application of organic dyes and pigments. VCH publishers, New York, pp 92–102

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Head of the Department of Botany, University of Delhi, Delhi for providing necessary facilities during the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lokendra Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Singh, L., Singh, V.P. (2015). Textile Dyes Degradation: A Microbial Approach for Biodegradation of Pollutants. In: Singh, S. (eds) Microbial Degradation of Synthetic Dyes in Wastewaters. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-10942-8_9

Download citation

Publish with us

Policies and ethics