Skip to main content

Basic Positioning Techniques

  • Chapter
  • First Online:
Indoor Location-Based Services

Abstract

Positioning technology can be organized by the underlying geometric principles such as triangulation, dead reckoning, or presence detection which can be further subdivided. Alternatively, the algorithms can be organized along observable variables (time, time difference, angle-of-arrival, angle-of-emission, signal strength, acceleration, rotation, etc.). This chapter provides basic algorithms for positioning organized along the underlying geometric principles. After explaining the basic algorithms, a description of real-world approaches is given, organized by the employed sensor technology and observable variables.

If people do not believe that mathematics is simple, it is only because they do not realize how complicated life is.

John von Neumann

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bahl, P., Padmanabhan, V.N.: Radar: an in-building rf-based user location and tracking system. In: Proceedings of the Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), vol. 2, pp. 775–784 (2000)

    Google Scholar 

  2. Boggs, J.: Geolocation of an audio source in a multipath environment using time-of-arrival. Tech. rep., DTIC Document (2004)

    Google Scholar 

  3. Cobb, H.S.: Gps pseudolites: theory, design, and applications. Ph.D. thesis, Stanford University (1997)

    Google Scholar 

  4. Davidson, P., Collin, J., Takala, J.: Application of particle filters for indoor positioning using floor plans. In: Ubiquitous Positioning, Indoor Navigation, and Location Based Service. IEEE, New York (2010)

    Google Scholar 

  5. Dille, M., Grocholsky, B., Singh, S.: Outdoor downward-facing optical flow odometry with commodity sensors. In: Field and Service Robotics, pp. 183–193. Springer, Berlin (2010)

    Google Scholar 

  6. Evennou, F., Marx, F.: Advanced integration of wifi and inertial navigation systems for indoor mobile positioning. Hindawi Publishing Corporation EURASIP J. Appl. Signal Process, 2006, 1–11 (2006). doi:10.1155/ASP/2006/86706

    Article  Google Scholar 

  7. Freund, R.W., Hoppe, R.H.W.: Stoer/Bulirsch: Numerische Mathematik 1. Zehnte, neu bearbeitete Auflage. Springer, Berlin/Heidelberg (2007)

    Google Scholar 

  8. Goyal, P., Ribeiro, V., Saran, H., Kumar, A.: Strap-down pedestrian dead-reckoning system. In: Proceedings of the International Conference on Indoor Positioning and Indoor Navigation. IEEE, New York (2011)

    Google Scholar 

  9. Hightower, J., Borriello, G.: Location systems for ubiquitous computing. Computer 34(8), 57–66 (2001)

    Article  Google Scholar 

  10. Huang, H., Gartner, G.: A survey of mobile indoor navigation systems. In: Cartography in Central and Eastern Europe, pp. 305–319. Springer, Berlin/Heidelberg (2010)

    Google Scholar 

  11. Kee, C., Yun, D., Jun, H., Parkinson, B., Pullen, S., Lagenstein, T.: Centimeter-accuracy indoor navigation using GPS-like pseudolites. In: GPSWorld (2001)

    Google Scholar 

  12. Küpper, A.: Location-Based Services: Fundamentals and Operation. Wiley, New York (2005)

    Book  Google Scholar 

  13. Link, J.A.B., Smith, P., Viol, N., Wehrle, K.: FootPath: accurate map-based indoor navigation using smartphones. In: Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (2011)

    Google Scholar 

  14. Ludwig, R.: Methoden der Fehler- und Ausgleichsrechnung. Deutscher Verlag der Wissenschaften, Berlin (1971)

    Google Scholar 

  15. Nagatani, K., Tachibana, S., Sofne, M., Tanaka, Y.: Improvement of odometry for omnidirectional vehicle using optical flow information. In: Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 468–473 (2000)

    Google Scholar 

  16. Orr, R., Abowd, G.: The smart floor: a mechanism for natural user identification and tracking. In: CHI: Extended Abstracts on Human Factors in Computing Systems, pp. 275–276. ACM, New York (2000)

    Google Scholar 

  17. Rizos, C., Roberts, G., Barnes, J., Gambale, N.: Locata: a new high accuracy indoor positioning system. In: Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (2010)

    Google Scholar 

  18. Schwarz, H.R., Köckler, N.: Numerische Mathematik. Fünfte Auflage, B.G. Teubner-Verlag, Wiesbaden (2004)

    Google Scholar 

  19. Storms, W., Shockley, J., Raquet, J.: Magnetic field navigation in an indoor environment. In: Ubiquitous Positioning, Indoor Navigation, and Location Based Service. IEEE, New York (2010)

    Google Scholar 

  20. Travis, W., Simmons, A., Bevly, D.: Corridor navigation with a lidar/ins kalman filter solution. In: Intelligent Vehicles Symposium, pp. 343–348. IEEE, New York (2005)

    Google Scholar 

  21. van Diggelen, F.: Indoor GPS theory & implementation. In: Position, Location and Navigation Symposium, PLANS, pp. 240–247 (2002)

    Google Scholar 

  22. Ward, A., Jones, A., Hopper, A.: A new location technique for the active office. IEEE Pers. Commun. 4(5), 42–47 (1997)

    Article  Google Scholar 

  23. Woodman, O., Harle, R.: Pedestrian localisation for indoor environments. In: Proceedings of the 10th International Conference on Ubiquitous Computing, pp. 114–123. ACM, New York (2008)

    Google Scholar 

  24. Xiao, W., Ni, W., Toh, Y.: Integrated wi-fi fingerprinting and inertial sensing for indoor positioning. In: International Conference on Indoor Positioning and Indoor Navigation. IEEE, New York (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Werner, M. (2014). Basic Positioning Techniques. In: Indoor Location-Based Services. Springer, Cham. https://doi.org/10.1007/978-3-319-10699-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10699-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10698-4

  • Online ISBN: 978-3-319-10699-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics