Skip to main content

Learning Distance Transform for Boundary Detection and Deformable Segmentation in CT Prostate Images

  • Conference paper
Machine Learning in Medical Imaging (MLMI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8679))

Included in the following conference series:

Abstract

Segmenting the prostate from CT images is a critical step in the radiotherapy planning for prostate cancer. The segmentation accuracy could largely affect the efficacy of radiation treatment. However, due to the touching boundaries with the bladder and the rectum, the prostate boundary is often ambiguous and hard to recognize, which leads to inconsistent manual delineations across different clinicians. In this paper, we propose a learning-based approach for boundary detection and deformable segmentation of the prostate. Our proposed method aims to learn a boundary distance transform, which maps an intensity image into a boundary distance map. To enforce the spatial consistency on the learned distance transform, we combine our approach with the auto-context model for iteratively refining the estimated distance map. After the refinement, the prostate boundaries can be readily detected by finding the valley in the distance map. In addition, the estimated distance map can also be used as a new external force for guiding the deformable segmentation. Specifically, to automatically segment the prostate, we integrate the estimated boundary distance map into a level set formulation. Experimental results on 73 CT planning images show that the proposed distance transform is more effective than the traditional classification-based method for driving the deformable segmentation. Also, our method can achieve more consistent segmentations than human raters, and more accurate results than the existing methods under comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Foskey, M., Davis, B., et al.: Large deformation three-dimensional image registration in image-guided radiation therapy. Phy. Med. Biol. 50(24), 5869 (2005)

    Article  Google Scholar 

  2. Lay, N., Birkbeck, N., Zhang, J., Zhou, S.K.: Rapid multi-organ segmentation using context integration and discriminative models. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 450–462. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Feng, Q., Foskey, M., Tang, S., Chen, W., Shen, D.: Segmenting CT prostate images using population and patient-specific statistics for radiotherapy. Med. Phys. 37(8), 4121–4132 (2010)

    Article  Google Scholar 

  4. Gao, Y., Liao, S., Shen, D.: Prostate segmentation by sparse representation based classification. Med. Phys. 39(10), 6372–6387 (2012)

    Article  Google Scholar 

  5. Costa, M.J., Delingette, H., Novellas, S., Ayache, N.: Automatic segmentation of bladder and prostate using coupled 3D deformable models. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 252–260. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Chen, S., Lovelock, D.M., Radke, R.J.: Segmenting the prostate and rectum in CT imagery using anatomical constraints. Med. Ima. Anal. 15(1), 1–11 (2011)

    Article  MATH  Google Scholar 

  7. Lu, C., et al.: Precise segmentation of multiple organs in CT volumes using learning-based approach and information theory. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part II. LNCS, vol. 7511, pp. 462–469. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Rousson, M., Khamene, A., Diallo, M., Celi, J.C., Sauer, F.: Constrained surface evolutions for prostate and bladder segmentation in CT images. In: Liu, Y., Jiang, T.-Z., Zhang, C. (eds.) CVBIA 2005. LNCS, vol. 3765, pp. 251–260. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Tu, Z., Bai, X.: Auto-context and its application to high-level vision tasks and 3D brain image segmentation. PAMI 32(10), 1744–1757 (2010)

    Article  Google Scholar 

  10. Criminisi, A., Shotton, J., Robertson, D., Konukoglu, E.: Regression forests for efficient anatomy detection and localization in CT studies. In: Menze, B., Langs, G., Tu, Z., Criminisi, A. (eds.) MICCAI 2010. LNCS, vol. 6533, pp. 106–117. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Canny, J.: A computational approach to edge detection. PAMI 8(6), 679–698 (1986)

    Article  Google Scholar 

  12. Chan, T., Vese, L.: Active contours without edges. TIP 10, 266–277 (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Gao, Y., Wang, L., Shao, Y., Shen, D. (2014). Learning Distance Transform for Boundary Detection and Deformable Segmentation in CT Prostate Images. In: Wu, G., Zhang, D., Zhou, L. (eds) Machine Learning in Medical Imaging. MLMI 2014. Lecture Notes in Computer Science, vol 8679. Springer, Cham. https://doi.org/10.1007/978-3-319-10581-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10581-9_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10580-2

  • Online ISBN: 978-3-319-10581-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics