Skip to main content

Coherence and Large-Scale Pattern Formation in Coupled Logistic-Map Lattices via Computer Algebra Systems

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8660))

Included in the following conference series:

Abstract

Three quantitative measures of the spatiotemporal behavior of the coupled map lattices: reduced density matrix, reduced wave function, and an analog of particle number, have been introduced. Making extensive use of two computer algebra systems (Maxima and Mathematica) various properties of the above mentioned parameters have been thoroughly studied. Their behavior suggests that the logistic coupled-map lattices approach the states which resemble the condensed states of systems of Bose particles. In addition, pattern formation in two-dimensional coupled map lattices based on the logistic mapping has been investigated with respect to the non-linear parameter, the diffusion constant and initial as well as boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bianconi, G., Barabasi, A.-L.: Bose–Einstein condensation in complex networks. Phys. Rev. Lett. 86, 5632–5635 (2001)

    Article  Google Scholar 

  2. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999)

    Article  Google Scholar 

  3. Chazottes, J.R., Fernandez, B.: Dynamics of Coupled Map Lattices and Related Spatially Extended Systems. Springer, New York (2005)

    MATH  Google Scholar 

  4. Ghoshdastidar, P.S., Chakraborty, I.: A coupled map lattice model of flow boiling in a horizontal tube. J. Heat Transfer 129, 1737–1741 (2007)

    Article  Google Scholar 

  5. Góral, K., Gajda, M., Rzążewski, K.: Multi-mode description of an interacting Bose–Einstein condensate. Opt. Express 8, 92–98 (2001)

    Article  Google Scholar 

  6. Góral, K., Gajda, M., Rzążewski, K.: Thermodynamics of an interacting trapped Bose–Einstein gas in the classical field approximation. Phys. Rev. A 66, 051602(R) (4 pages) (2002)

    Google Scholar 

  7. Hale, J., Koçak, H.: Dynamics and Bifurcations. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  8. Ilachinski, A.: Cellular Automata. A Discrete Universe. World Scientific, Singapore (2001)

    Book  Google Scholar 

  9. Janosi, I.M., Flepp, L., Tel, T.: Exploring transient chaos in an NMR-laser experiment. Phys. Rev. Lett. 73, 529–532 (1994)

    Article  Google Scholar 

  10. Janowicz, M., Orłowski, A.: Coherence properties of coupled chaotic map lattices. Acta Phys. Polon. A 120, A-114–A-118 (2011)

    Google Scholar 

  11. Kadio, D., Gajda, M., Rzążewski, K.: Phase fluctuations of a Bose–Einstein condensate in low-dimensional geometry. Phys. Rev. A 72, 013607 (9 pages) (2005)

    Google Scholar 

  12. Kaneko, K.: Period-doubling of kink-antikink patterns, quasi-periodicity in antiferro-like structures and spatial intermittency in coupled map lattices – Toward a prelude to a “Field Theory of Chaos”. Prog. Theor. Phys. 72, 480–486 (1984)

    Article  MATH  Google Scholar 

  13. Kaneko, K.: Pattern dynamics in spatiotemporal chaos. Physica D 34, 1–41 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kaneko, K.: Simulating physics with coupled map lattices – Pattern dynamics, information flow, and thermodynamics of spatiotemporal chaos. In: Kawasaki, K., Onuki, A., Suzuki, M. (eds.) Pattern Dynamics, Information Flow, and Thermodynamics of Spatiotemporal Chaos, pp. 1–52. World Scientific, Singapore (1990)

    Google Scholar 

  15. Kapral, R.: Pattern formation in two-dimensional arrays of coupled, discrete-time Oscillators. Phys. Rev. A 31, 3868–3879 (1985)

    Article  MathSciNet  Google Scholar 

  16. Leggett, A.: Bose–Einstein condensation in the alkali gases: some fundamental concepts. Rev. Mod. Phys. 73, 307–356 (2001)

    Article  Google Scholar 

  17. Muruganandam, P., Francisco, F., de Menezes, M., Ferreira, F.F.: Low dimensional behavior in three-dimensional coupled map lattices. Chaos, Solitons and Fractals 41, 997–1004 (2009)

    Article  Google Scholar 

  18. Penrose, O., Onsager, L.: Bose–Einstein condensation and liquid helium. Phys. Rev. 104, 576–584 (1956)

    Article  MATH  Google Scholar 

  19. Petrov, D.S., Shlyapnikov, G.V., Walraven, J.T.M.: Regimes of quantum degeneracy in trapped 1D gases. Phys. Rev. Lett. 85, 3745–3749 (2000)

    Article  Google Scholar 

  20. Petrov, D.S., Shlyapnikov, G.V., Walraven, J.T.M.: Phase-fluctuating 3D Bose–Einstein condensates in elongated traps. Phys. Rev. Lett. 87, 050404 (4 pages) (2001)

    Google Scholar 

  21. Reka, A., Barabasi, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  Google Scholar 

  22. Schmidt, H., Góral, K., Floegel, F., Gajda, M., Rzążewski, K.: Probing the classical field approximation – thermodynamics and decaying vortices. J. Opt. B: Quantum Semiclassical Opt. 5, S96 (2003)

    Google Scholar 

  23. Sinha, S.: Transient 1/f Noise. Phys. Rev. E 53, 4509–4513 (1996)

    Article  Google Scholar 

  24. Waller, I., Kapral, R.: Spatial and temporal structure in systems of coupled nonlinear oscillators. Phys. Rev. A 30, 2047–2055 (1984)

    Article  Google Scholar 

  25. Yanagita, T.: Coupled map lattice model for boiling. Phys. Lett. A 165, 405–408 (1992)

    Article  Google Scholar 

  26. Yanagita, T., Kaneko, K.: Rayleigh–Benard convection: Pattern, chaos, spatiotemporal chaos and turbulence. Physica D 82, 288–313 (1995)

    Article  MATH  Google Scholar 

  27. Yanagita, T., Kaneko, K.: Modeling and characterization of cloud dynamics. Phys. Rev. Lett. 78, 4297–4300 (1997)

    Article  Google Scholar 

  28. Yang, C.N.: Concept of off-diagonal long-range order and the quantum phases of liquid He and of superconductors. Rev. Mod. Phys. 34, 694–704 (1962)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Janowicz, M., Orłowski, A. (2014). Coherence and Large-Scale Pattern Formation in Coupled Logistic-Map Lattices via Computer Algebra Systems. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2014. Lecture Notes in Computer Science, vol 8660. Springer, Cham. https://doi.org/10.1007/978-3-319-10515-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10515-4_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10514-7

  • Online ISBN: 978-3-319-10515-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics