Skip to main content

Plasma Structure and Dynamics

  • Chapter
  • First Online:
Solar Prominences

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 415))

Abstract

Despite over a century of observations, the physical processes by which prominence plasma forms and evolves remain controversial. In this chapter we review the observational constraints on all mass formation models, review the four leading models—injection, levitation, evaporation–condensation, and magneto-thermal convection, describe the strengths and weaknesses of each model, and point out opportunities for future work. As needed, short tutorials are provided on fundamental physical mechanisms and concepts not covered in other chapters, including magnetic reconnection and energy balance in coronal loops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn, K., Chae, J., Cao, W., & Goode, P. R. (2010). Patterns of flows in an intermediate prominence observed by Hinode. The Astrophysical Journal, 721, 74.

    ADS  Google Scholar 

  • An, C.-H. (1985). Formation of prominences by condensation modes in magnetized cylindrical plasmas. The Astrophysical Journal, 298, 409.

    ADS  Google Scholar 

  • Antiochos, S. K., & Klimchuk, J. A. (1991). A model for the formation of solar prominences. The Astrophysical Journal, 378, 372.

    ADS  Google Scholar 

  • Antiochos, S. K., & Sturrock, P. A. (1978). Evaporative cooling of flare plasma. The Astrophysical Journal, 220, 1137.

    ADS  Google Scholar 

  • Antiochos, S. K., MacNeice, P. J., Spicer, D. S., & Klimchuk, J. A. (1999). The dynamic formation of prominence condensations. The Astrophysical Journal, 512, 985.

    ADS  Google Scholar 

  • Antiochos, S. K., MacNeice, P. J., & Spicer, D. S. (2000). The thermal nonequilibrium of prominences. The Astrophysical Journal, 536, 494.

    ADS  Google Scholar 

  • Antolin, P., Shibata, K., & Vissers, G. (2010). Coronal rain as a marker for coronal heating mechanisms. The Astrophysical Journal, 716, 154.

    ADS  Google Scholar 

  • Anzer, U., & Heinzel, P. (2003). On the nature of extended EUV filaments. Astronomy and Astrophysics, 404, 1139.

    ADS  Google Scholar 

  • Archontis, V. (2008). Magnetic flux emergence in the sun. Journal of Geophysical Research, 113, 12422.

    Google Scholar 

  • Archontis, V., Moreno-Insertis, F., Galsgaard, K., Hood, A., & O’Shea, E. (2004). Emergence of magnetic flux from the convection zone into the corona. Astronomy and Astrophysics, 426, 1047.

    ADS  Google Scholar 

  • Archontis, V., Hood, A. W., & Brady, C. (2007). Emergence and interaction of twisted flux tubes in the sun. Astronomy and Astrophysics, 466, 367.

    ADS  Google Scholar 

  • Aschwanden, M., Schrijver, C. J., & Alexander, D. (2001). An assessment of coronal heating models based on Yohkoh, SoHO, and TRACE observations. The Astrophysical Journal, 550, 1036.

    ADS  Google Scholar 

  • Auchere, F., Bocchialini, K., Solomon, J., & Tison, E. (2014). Long-period intensity pulsations in the solar corona during activity cycle 23. Astronomy and Astrophysics, 563, A8.

    ADS  Google Scholar 

  • Aulanier, G., & Schmieder, B. (2002). The magnetic nature of wide EUV filament channels and their role in the mass loading of CMEs. Astronomy and Astrophysics, 386, 1106.

    ADS  Google Scholar 

  • Aulanier, G., Démoulin, P., van Driel-Gesztelyi, L., Mein, P., & Deforest, C. (1998). 3-D magnetic configurations supporting prominences. II. The lateral feet as a perturbation of a twisted flux-tube. Astronomy and Astrophysics, 335, 309.

    ADS  Google Scholar 

  • Berger, T. E., Shine, R. A., Slater, G. L., Tarbell, T. D., Title, A. M., Okamoto, T. J., Ichimoto, K., Katsukawa, Y., Suematsu, Y., Tsuneta, S., Lites, B. W., & Shimizu, T. (2008). Hinode SOT observations of solar quiescent prominence dynamics. The Astrophysical Journal, 676, L89.

    ADS  Google Scholar 

  • Berger, T. E., Slater, G., Hurlburt, N., et~al. (2010). Quiescent prominence dynamics observed with the Hinode solar optical telescope. I. Turbulent upflow plumes. The Astrophysical Journal, 716, 1288.

    ADS  Google Scholar 

  • Berger, T., Testa, P., Hillier, A., et~al. (2011). Magneto-thermal convection in solar prominences. Nature, 472, 197.

    ADS  Google Scholar 

  • Berger, T. E., Liu, W., & Low, B. C. (2012). SDO/AIA detection of solar prominence formation within a coronal cavity. The Astrophysical Journal, 758, L37.

    ADS  Google Scholar 

  • Biskamp, D. (2000). Magnetic reconnection in plasmas (p. 199). Cambridge: Cambridge University Press.

    Google Scholar 

  • Bobra, M. G., van Ballegooijen, A. A., & DeLuca, E. E. (2008). Modeling nonpotential magnetic fields in solar active regions. The Astrophysical Journal, 672, 1209.

    ADS  Google Scholar 

  • Bocchialini, K., Baudin, F., Koutchmy, S., Pouget, G., & Solomon, J. (2011). Oscillatory motions observed in eruptive filaments. Astronomy and Astrophysics, 533, A96.

    ADS  Google Scholar 

  • Bradshaw, S. J., & Cargill, P. J. (2013). The influence of numerical resolution on coronal density in hydrodynamic models of impulsive heating. The Astrophysical Journal, 770, 12.

    ADS  Google Scholar 

  • Braginskii, S. I. (1965). Reviews of Plasma Physics, 1, 205.

    ADS  Google Scholar 

  • Chae, J. (2003). The formation of a prominence in NOAA active region 8668. II. Trace observations of jets and eruptions associated with canceling magnetic features. The Astrophysical Journal, 584, 1084.

    ADS  Google Scholar 

  • Chae, J., Denker, C., Spirock, T. J., Wang, H., & Goode, P. R. (2000). High-resolution Hα observations of proper motion in NOAA 8668: Evidence for filament mass injection by chromospheric reconnection. Solar Physics, 195, 333.

    ADS  Google Scholar 

  • Chae, J., Martin, S. F., Yun, H. S., Kim, J., Lee, S., Goode, P. R., Spirock, T., & Wang, H. (2001). Small magnetic bipoles emerging in a filament channel. The Astrophysical Journal, 548, 497.

    ADS  Google Scholar 

  • Chae, J., Moon, Y.-J., & Park, Y.-D. (2005). The magnetic structure of filament barbs. The Astrophysical Journal, 626, 574.

    ADS  Google Scholar 

  • Chae, J., Ahn, K., Lim, E.-K., Choe, G. S., & Sakurai, T. (2008). Persistent horizontal flows and magnetic support of vertical threads in a quiescent prominence. The Astrophysical Journal, 689, L73.

    ADS  Google Scholar 

  • Cheung, M. C. M., Schüssler, M., & Moreno-Insertis, F. (2007). Magnetic flux emergence in granular convection: Radiative MHD simulations and observational signatures. Astronomy and Astrophysics, 467, 703.

    ADS  Google Scholar 

  • Dahlburg, R. B., Antiochos, S. K., & Klimchuk, J. A. (1998). Prominence formation by localized heating. The Astrophysical Journal, 495, 485.

    ADS  Google Scholar 

  • De Pontieu, B., McIntosh, S. W., Carlsson, M., Hansteen, V. H., Tarbell, T. D., et~al. (2007). Chromospheric Alfvénic waves strong enough to power the solar wind. Science, 318, 1574.

    ADS  Google Scholar 

  • Deng, Y., Schmieder, B., Engvold, O., DeLuca, E., & Golub, L. (2000). Emergence of sheared magnetic flux tubes in an active region observed with the SVST and TRACE. Solar Physics, 195, 347.

    ADS  Google Scholar 

  • DeVore, C. R., & Antiochos, S. K. (2000). Dynamical formation and stability of helical prominence magnetic fields. The Astrophysical Journal, 539, 954.

    ADS  Google Scholar 

  • DeVore, C. R., Antiochos, S. K., & Aulanier, G. (2005). Solar Prominence Interactions, Astrophysical Journal, 629, 1122.

    Google Scholar 

  • Engvold, O. (2014). Description and classification of prominences. In J.-C. Vial & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 31–60). New York: Springer.

    Google Scholar 

  • Engvold, O., & Jensen, E. (1977). On Pikel‘ner’s theory of prominences. Solar Physics, 52, 37.

    ADS  Google Scholar 

  • Fan, Y. H. (2001). The emergence of a twisted omega-tube into the solar atmosphere. The Astrophysical Journal, 554, L111.

    ADS  Google Scholar 

  • Fan, Y. H. (2014). MHD equilibira and triggers for prominence eruption. In J.-C. Vial & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 295–320). New York: Springer.

    Google Scholar 

  • Fang, F., Manchester, W., Abbett, W., & van der Holst, B. (2010). Simulation of flux emergence from the convection zone to the corona. The Astrophysical Journal, 714, 1649.

    ADS  Google Scholar 

  • Field, G. B. (1965). Thermal instability. The Astrophysical Journal, 142, 531.

    ADS  Google Scholar 

  • Galsgaard, K., & Longbottom, A. W. (1999). Formation of solar prominences by flux convergence. The Astrophysical Journal, 510, 444.

    ADS  Google Scholar 

  • Galsgaard, K., Archontis, V., Moreno-Insertis, F., & Hood, A. W. (2007). The effect of the relative orientation between the coronal field and new emerging flux. I. Global properties. The Astrophysical Journal, 666, 516.

    ADS  Google Scholar 

  • Gibson, S. (2014). Coronal cavities: observations and implications for the magnetic environment of prominences. In J.-C. Vial & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 321–351). New York: Springer.

    Google Scholar 

  • Gilbert, H. (2014). Energy balance. In J.-C. Vial & O. Engvold (Eds.), Solar prominences. New York: Springer.

    Google Scholar 

  • Gunar, S., Heinzel, P., Schmieder, B., Schwartz, P., & Anzer, U. (2007). Properties of prominence fine-structure threads derived from SOHO/SUMER hydrogen Lyman lines. Astronomy and Astrophysics, 472, 929.

    ADS  Google Scholar 

  • Gunar, S., Heinzel, P., Anzer, U., & Schmieder, B. (2008). On Lyman-line asymmetries in quiescent prominences. Astronomy and Astrophysics, 490, 307.

    ADS  Google Scholar 

  • Harvey, K. L., Jones, H. P., Schrijver, C. J., & Penn, M. (1999). Does magnetic flux submerge at flux cancelation sites? Solar Physics, 190, 35.

    ADS  Google Scholar 

  • Heinzel, P., & Anzer, U. (2001). Prominence fine structures in a magnetic equilibrium: Two-dimensional models with multilevel radiative transfer. Astronomy and Astrophysics, 375, 1082.

    ADS  Google Scholar 

  • Heinzel, P., & Anzer, U. (2006). On the fine structure of solar filaments. The Astrophysical Journal, 643, L65.

    ADS  Google Scholar 

  • Hildner, E. (1974). The formation of solar quiescent prominences by condensation. Solar Physics, 35, 123.

    ADS  Google Scholar 

  • Hillier, A., Isobe, H., & Watanabe, H. (2011). Observations of plasma blob ejection from a quiescent prominence by Hinode solar optical telescope. Publications of the Astronomical Society of Japan, 63, L19.

    ADS  Google Scholar 

  • Hillier, A., Berger, T., Isobe, H., & Shibata, K. (2012a). Numerical simulations of the magnetic Rayleigh–Taylor instability in the Kippenhahn–Schlüter prominence model. I. Formation of upflows. The Astrophysical Journal, 746, 120.

    ADS  Google Scholar 

  • Hillier, A., Isobe, H., Shibata, K., & Berger, T. (2012b). Numerical simulations of the magnetic Rayleigh–Taylor instability in the Kippenhahn–Schlüter prominence model. II. Reconnection-triggered downflows. The Astrophysical Journal, 756, 110.

    ADS  Google Scholar 

  • Karpen, J. T., & Antiochos, S. K. (2008). Condensation formation by impulsive heating in prominences. The Astrophysical Journal, 676, 658.

    ADS  Google Scholar 

  • Karpen, J. T., Antiochos, S. K., Hohensee, M., Klimchuk, J. A., & MacNeice, P. J. (2001). Are magnetic dips necessary for prominence formation? The Astrophysical Journal, 553, L85.

    ADS  Google Scholar 

  • Karpen, J. T., Antiochos, S. K., Klimchuk, J. A., & MacNeice, P. J. (2003). Constraints on the magnetic field geometry in prominences. The Astrophysical Journal, 593, 1187.

    ADS  Google Scholar 

  • Karpen, J. T., Antiochos, S. K., Tanner, S. E., & DeVore, C. R. (2005). Prominence formation by thermal nonequilibrium in the sheared-arcade model. The Astrophysical Journal, 635, 1319.

    ADS  Google Scholar 

  • Karpen, J. T., Antiochos, S. K., & Klimchuk, J. A. (2006). The origin of high-speed motions and threads in prominences. The Astrophysical Journal, 637, 531.

    ADS  Google Scholar 

  • Kippenhahn, R., & Schlüter, A. (1957). Eine theorie der solaren filamente. Mit 7 Textabbildungen. Zeitschrift für Astrophysik, 43, 36.

    ADS  MATH  Google Scholar 

  • Klimchuk, J. A. (2006). On solving the coronal heating problem. Solar Physics, 234, 41.

    ADS  Google Scholar 

  • Kubo, M., & Shimizu, T. (2007). Magnetic field properties of flux cancellation sites. The Astrophysical Journal, 671, 990.

    ADS  Google Scholar 

  • Kubota, J., & Uesugi, A. (1986). The vertical motion of matter in a prominence observed on May 7, 1984. Publications of the Astronomical Society of Japan, 38, 903.

    ADS  Google Scholar 

  • Kucera, T. A., & Landi, E. (2006). Ultraviolet observations of prominence activation and cool loop dynamics. The Astrophysical Journal, 645, 1525.

    ADS  Google Scholar 

  • Kucera, T. A., Tovar, M., & De Pontieu, B. (2003). Prominence motions observed at high cadences in temperatures from 10 000 to 250 000 K. Solar Physics, 212, 81.

    ADS  Google Scholar 

  • Kuckein, C., Martinez Pillet, V., & Centeno, R. (2012). An active region filament studied simultaneously in the chromosphere and photosphere. I. Magnetic structure. Astronomy and Astrophysics, 539, A131.

    ADS  Google Scholar 

  • Kulsrud, R. M. (2005). Plasma physics for astrophysics. Princeton: Princeton University Press.

    Google Scholar 

  • Leake, J. E., & Arber, T. D. (2006). The emergence of magnetic flux through a partially ionised solar atmosphere. Astronomy and Astrophysics, 450, 2.

    Google Scholar 

  • Leake, J. E., & Linton, M. G. (2013). Effect of ion-neutral collisions in simulations of emerging active regions. The Astrophysical Journal, 764, 54.

    ADS  Google Scholar 

  • Leake, J. E., Lukin, V. S., Linton, M. G., & Meier, E. T. (2012). Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma. The Astrophysical Journal, 760, 109.

    ADS  Google Scholar 

  • Lin, Y., Engvold, O., & Wiik, J. E. (2003). Counterstreaming in a large polar crown filament. Solar Physics, 216, 109.

    ADS  Google Scholar 

  • Lin, Y., Engvold, O., Rouppe van der Voort, L., Wiik, J. E., & Berger, T. E. (2005). Thin threads of solar filaments. Solar Physics, 226, 239.

    ADS  Google Scholar 

  • Lites, B. W. (2005). Magnetic flux ropes in the solar photosphere: The vector magnetic field under active region filaments. The Astrophysical Journal, 622, 1275.

    ADS  Google Scholar 

  • Litvinenko, Y. E., & Martin, S. F. (1999). Magnetic reconnection as the cause of a photospheric canceling feature and mass flows in a filament. Solar Physics, 190, 45.

    ADS  Google Scholar 

  • Litvinenko, Y. E., & Wheatland, M. S. (2005). A simple dynamical model for filament formation in the solar corona. The Astrophysical Journal, 630, 587.

    ADS  Google Scholar 

  • Litvinenko, Y. E., Chae, J., & Park, S.-Y. (2007). Flux pile-up magnetic reconnection in the solar photosphere. The Astrophysical Journal, 662, 1302.

    ADS  Google Scholar 

  • Liu, Y., Kurokawa, H., & Shibata, K. (2005). Production of filaments by surges. The Astrophysical Journal, 631, L97.

    ADS  Google Scholar 

  • Liu, W., Berger, T. E., & Low, B. C. (2012). First SDO/AIA observation of solar prominence formation following an eruption: Magnetic dips and sustained condensation and drainage. The Astrophysical Journal, 745, L21.

    ADS  Google Scholar 

  • Liu, W., Berger, T. E., & Low, B. C. (2013). Nature of prominences and their role in space weather. In B. Schmieder, J.-M. Malherbe, & S.-T. Wu (Eds.), Proceedings of IAU symposium (Vol. 300, p. 441).

    Google Scholar 

  • López Ariste, A., Aulanier, G., Schmieder, B., & Sainz Dalda, A. (2006). First observation of bald patches in a filament channel and at a barb endpoint. Astronomy and Astrophysics, 456, 725.

    ADS  Google Scholar 

  • Low, B. C., Berger, T., Casini, R., & Liu, W. (2012a). The hydromagnetic interior of a solar quiescent prominence. I. Coupling between force balance and steady energy transport. The Astrophysical Journal, 755, 34.

    ADS  Google Scholar 

  • Low, B. C., Liu, W., Berger, T., & Casini, R. (2012b). The hydromagnetic interior of a solar quiescent prominence. II. Magnetic discontinuities and cross-field mass transport. The Astrophysical Journal, 757, 21.

    ADS  Google Scholar 

  • Luna, M., Karpen, J. T., & DeVore, C. R. (2012). Formation and evolution of a multi-threaded solar prominence. The Astrophysical Journal, 746, 30.

    ADS  Google Scholar 

  • Luna, M., Knizhnik, K., Muglach, K., Karpen, J., Gilbert, H., Kucera, T., et al. (2014). Observations and implications of large-amplitude longitudinal oscillations in a solar filament. The Astrophysical Journal, 785, 79.

    ADS  Google Scholar 

  • Mackay, D. H. (2014). Formation and large-scale patterns of filament channels and filaments. In J.-C. Vial & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 353–378). New York: Springer.

    Google Scholar 

  • Mackay, D. H., Karpen, J. T., Ballester, J. L., Schmieder, B., & Aulanier, G. (2010). Physics of solar prominences: II—Magnetic structure and dynamics. Space Science Review, 151, 333.

    ADS  Google Scholar 

  • MacTaggart, D., & Hood, A. W. (2010). Simulating the “sliding doors” effect through magnetic flux emergence. The Astrophysical Journal, 716, L219.

    ADS  Google Scholar 

  • Magara, T. (2006). Dynamic and topological features of photospheric and coronal activities produced by flux emergence in the sun. The Astrophysical Journal, 653, 1499.

    ADS  Google Scholar 

  • Magara, T. (2011). A possible mechanism of flux cancellation via U-loop emergence on the sun. Publications of the Astronomical Society of Japan, 63, 417.

    ADS  Google Scholar 

  • Malherbe, J.-M. (1989). The formation of solar prominences. In E.R. Priest (Eds.), Dynamics and structure of quiescent solar prominences (p. 115) Dordrecht: Kluwer.

    Google Scholar 

  • Manchester, W., IV, Gombosi, T., DeZeeuw, D., & Fan, Y. (2004). Eruption of a buoyantly emerging magnetic flux rope. The Astrophysical Journal, 610, 588.

    ADS  Google Scholar 

  • Martens, P. C. H. (2010). Scaling laws and temperature profiles for solar and stellar coronal loops with non-uniform heating. The Astrophysical Journal, 714, 1290.

    ADS  Google Scholar 

  • Martens, P. C., & Zwaan, C. (2001). Origin and evolution of filament-prominence systems. The Astrophysical Journal, 538, 872.

    ADS  Google Scholar 

  • Martin, S. F. (1973). The evolution of prominences and their relationship to active centers (a review). Solar Physics, 31, 3.

    ADS  Google Scholar 

  • Martin, S. F. (1998). Conditions for the formation and maintenance of filaments (invited review). Solar Physics, 182, 107.

    ADS  Google Scholar 

  • Martin, S. F. (2014). The magnetic field structure of prominences from direct and indirect observations. In J.-C. Vial & O. Engvold (Eds.), Solar prominences. New York: Springer.

    Google Scholar 

  • Martin, S. F., & Echols, C. R. (1994). An observational and conceptual model of the magnetic field of a filament. In R. J. Rutten, & C. J. Schrijver (Eds.), Solar surface magnetism (p. 339) Dordrecht: Kluwer.

    Google Scholar 

  • McMath, R. R., & Pettit, E. (1938). Prominence studies. The Astrophysical Journal, 88, 244.

    ADS  Google Scholar 

  • Mok, Y., Drake, J. F., Schnack, D. D., & Van Hoven, G. (1990). Prominence formation in a coronal loop. The Astrophysical Journal, 359, 228.

    ADS  Google Scholar 

  • Moreno-Insertis, F. (2004). The emergence of magnetic field into stellar atmospheres. Astrophysics and Space Science, 292, 587.

    ADS  Google Scholar 

  • Müller, D. A. N., Hansteen, V. H., & Peter, H. (2003). Dynamics of solar coronal loops. I. Condensation in cool loops and its effect on transition region lines. Astronomy and Astrophysics, 411, 605.

    ADS  Google Scholar 

  • Müller, D. A. N., De Groof, A., Hansteen, V. H., & Peter, H. (2005). High-speed coronal rain. Astronomy and Astrophysics, 436, 1067.

    ADS  Google Scholar 

  • Murray, M. J., Hood, A. W., Moreno-Insertis, F., Galsgaard, K., & Archontis, V. (2006). 3D simulations identifying the effects of varying the twist and field strength of an emerging flux tube. Astronomy and Astrophysics, 460, 909.

    ADS  Google Scholar 

  • Okamoto, T. J., Tsuneta, S., Berger, T. E., Ichimoto, K., Katsukawa, Y., Lites, B. W., Nagata, S., et~al. (2007). Chromospheric anemone jets as evidence of ubiquitous reconnection. Science, 318, 1577.

    ADS  Google Scholar 

  • Okamoto, T. J., Tsuneta, S., Lites, B. W., Kubo, M., Yokoyama, T., Berger, T. E., et~al. (2008). Emergence of a helical flux rope under an active region prominence. The Astrophysical Journal, 673, L215.

    ADS  Google Scholar 

  • Okamoto, T. J., Tsuneta, S., & Berger, T. E. (2010). A rising cool column as a signature of helical flux emergence and formation of prominence and coronal cavity. The Astrophysical Journal, 719, 583.

    ADS  Google Scholar 

  • Oliver, R., Cadez, V. M., Carbonell, M., & Ballester, J. L. (1999). Coronal potential magnetic fields from photospheric sources with finite width. Astronomy and Astrophysics, 351, 733.

    ADS  Google Scholar 

  • Parker, E. N. (1953). Instability of thermal fields. The Astrophysical Journal, 117, 431.

    ADS  Google Scholar 

  • Pecseli, H., & Engvold, O. (2000). Modeling of prominence threads in magnetic fields: Levitation by incompressible MHD waves. Solar Physics, 194, 73.

    ADS  Google Scholar 

  • Pikel’ner, S. B. (1971). Origin of quiescent prominences. Solar Physics, 17, 44.

    ADS  Google Scholar 

  • Poland, A. I., & Mariska, J. T. (1986). A siphon mechanism for supplying prominence mass. Solar Physics, 104, 303.

    ADS  Google Scholar 

  • Priest, E. R., & Forbes, T. E. (2000). Magnetic reconnection. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Priest, E. R., van Ballegooijen, A. A., & Mackay, D. H. (1996). A model for dextral and sinistral prominences. The Astrophysical Journal, 460, 530.

    ADS  Google Scholar 

  • Rosner, R., Tucker, W. H., & Vaiana, G. S. (1978). Dynamics of the quiescent solar corona. The Astrophysical Journal, 220, 643.

    ADS  Google Scholar 

  • Rust, D. M., & Kumar, A. (1994). Helical magnetic fields in filaments. Solar Physics, 155, 69.

    ADS  Google Scholar 

  • Saito, K., & Tandberg-Hanssen, E. (1973). The arch systems, cavities, and prominences in the helmet streamer observed at the solar eclipse, November 12, 1966. Solar Physics, 31, 105.

    ADS  Google Scholar 

  • Schmieder, B., Raadu, M. A., & Wiik, J. E. (1991). Fine structure of solar filaments. II – Dynamics of threads and footpoints. Astronomy and Astrophysics, 252, 353.

    ADS  Google Scholar 

  • Schmieder, B., Kucera, T. A., Knizhnik, K., Luna, M., López Ariste, A., & Toot, D. (2013). Propagating waves transverse to the magnetic field in a solar prominence. The Astrophysical Journal, 777, 108.

    ADS  Google Scholar 

  • Schrijver, C. J. (2001). Catastrophic cooling and high-speed downflow in quiescent solar coronal loops observed with TRACE. Solar Physics, 198, 325.

    ADS  Google Scholar 

  • Schwartz, P., Heinzel, P., & Schmieder, B. (2006). Study of an extended EUV filament using SoHO/SUMER observations of the hydrogen Lyman lines. Astronomy and Astrophysics, 459, 651.

    ADS  Google Scholar 

  • Serio, S., Peres, G., Vaiana, G. S., Golub, L., & Rosner, R. (1981). Closed coronal structures. II – Generalized hydrostatic model. The Astrophysical Journal, 243, 288.

    ADS  Google Scholar 

  • Sturrock, P. A. (1999). Chromospheric magnetic reconnection and its possible relationship to coronal heating. The Astrophysical Journal, 521, 451.

    ADS  Google Scholar 

  • Tandberg-Hanssen, E. (1995). The nature of solar prominences (p. 358). Dordrecht: Kluwer.

    Google Scholar 

  • van Ballegooijen, A. A. (2004). Observations and modeling of a filament on the sun. The Astrophysical Journal, 612, 519.

    ADS  Google Scholar 

  • van Ballegooijen, A. A., & Martens, P. C. H. (1989). Formation and eruption of solar prominences. The Astrophysical Journal, 343, 971.

    ADS  Google Scholar 

  • Von Rekowski, B., & Hood, A. (2008). Photospheric cancelling magnetic features and associated phenomena in a stratified solar atmosphere. Monthly Notices of the Royal Astronomical Society, 385, 1792.

    ADS  Google Scholar 

  • Wang, Y.-M. (1999). The jetlike nature of He II lambda304 prominences. The Astrophysical Journal, 520, L71.

    ADS  Google Scholar 

  • Wang, Y.-M., & Muglach, K. (2007). On the formation of filament channels. The Astrophysical Journal, 666, 1284.

    ADS  Google Scholar 

  • Warren, H. P., Winebarger, A. R., & Hamilton, P. S. (2002). Hydrodynamic modeling of active region loops. The Astrophysical Journal, 579, L41.

    ADS  Google Scholar 

  • Welsch, B. T., DeVore, C. R., & Antiochos, S. K. (2005). Magnetic reconnection models of prominence formation. The Astrophysical Journal, 634, 1395.

    ADS  Google Scholar 

  • Winebarger, A. R., Warren, H., van Ballegooijen, A., DeLuca, E. E., & Golub, L. (2002). Steady flows detected in extreme-ultraviolet loops. The Astrophysical Journal, 567, L89.

    ADS  Google Scholar 

  • Wu, S. T., Bao, J. J., An, C. H., & Tandberg-Hanssen, E. (1990). The role of condensation and heat conduction in the formation of prominences – An MHD simulation. Solar Physics, 125, 277.

    ADS  Google Scholar 

  • Xia, C., Chen, P. F., & Keppens, R. (2012). Simulations of prominence formation in the magnetized solar corona by chromospheric heating. The Astrophysical Journal, 748, L26.

    ADS  Google Scholar 

  • Xia, C., Keppens, R., & Guo, Y. (2014). Three-dimensional prominence-hosting magnetic configurations: Creating a helical magnetic flux rope. The Astrophysical Journal, 780, 130.

    ADS  Google Scholar 

  • Yamada, M., Kulsrud, R., & Ji, H. (2010). Magnetic reconnection. Review of Modern Physics, 82, 603.

    ADS  Google Scholar 

  • Yelles Chaouche, L., Kuckein, C., Martinez Pillet, V., & Moreno-Insertis, F. (2012). The three-dimensional structure of an active region filament as extrapolated from photospheric and chromospheric observations. The Astrophysical Journal, 748, 23.

    ADS  Google Scholar 

  • Yokoyama, T., & Shibata, K. (1995). Magnetic reconnection as the origin of X-ray jets and Halpha surges on the sun. Nature, 375, 42.

    ADS  Google Scholar 

  • Zirker, J. B., Engvold, O., & Yi, Z. (1994). Flows in quiescent prominences. Solar Physics, 150, 81.

    ADS  Google Scholar 

  • Zirker, J. B., Engvold, O., & Martin, S. F. (1998). Counter-streaming gas flows in solar prominences as evidence for vertical magnetic fields. Nature, 396, 440.

    ADS  Google Scholar 

  • Zwaan, C. (1987). Elements and patterns in the solar magnetic field. Annual Review of Astronomy and Astrophysics, 25, 83.

    ADS  Google Scholar 

  • Zweibel, E. (1989). Magnetic reconnection in partially ionized gases. The Astrophysical Journal, 340, 550.

    ADS  Google Scholar 

  • Zweibel, E., Lawrence, E., Yoo, J., Ji, H., Yamada, M., & Malyshkin, L. (2011). Magnetic reconnection in partially ionized plasmas. Physics of Plasmas, 18, 111211.

    ADS  Google Scholar 

Download references

Acknowledgments

JK would like to thank S. Antiochos, T. Berger, C.R. DeVore, S. Guidoni, J. Leake, W. Liu, M. Luna Benassar, and E. Zweibel for their helpful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith T. Karpen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Karpen, J.T. (2015). Plasma Structure and Dynamics. In: Vial, JC., Engvold, O. (eds) Solar Prominences. Astrophysics and Space Science Library, vol 415. Springer, Cham. https://doi.org/10.1007/978-3-319-10416-4_10

Download citation

Publish with us

Policies and ethics