Skip to main content

Phytoextraction of Metals: Modeling Root Metal Uptake and Associated Processes

  • Chapter
  • First Online:
Phytoremediation

Abstract

Because the efficiency of phytoextraction processes is still questionable, various mechanistic and empirical models are needed to better evaluate the suitability of the method. This chapter discusses different aspects of such modeling. First, models predicting the transport of metals and metalloids in the soils and in the roots are presented and discussed in accordance with well-known mechanisms of metal uptake. Because metal (and metalloid) uptake greatly depends on their speciation in the soil solution, several geochemical models providing such information are presented here. This chapter provides an in-depth overview of those models; however, their combination (geochemical, transport, empirical, etc.) will be crucial in order to obtain a robust and transferable model of metal/metalloid uptake and phytoextraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedin MJ, Feldmann J, Meharg AA (2002) Uptake kinetics of arsenic species in rice plants. Plant Physiol 128:1120–1128

    PubMed Central  CAS  PubMed  Google Scholar 

  • Allison JD, Brown DS, Novo-Gradac KJ (1991) MINTEQA2/PRODEFA2.A geochemical assessment model for environmental systems. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Baker AJM (1981) Accumulators and excluders strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    CAS  Google Scholar 

  • Balsberg Påhlsson A-M (1989) Toxicity of heavy metals (Zn, Cu, Cd, Pb) to vascular plants. Water Air Soil Pollut 47:287–319

    Google Scholar 

  • Baltrënaïtë E, Butkus D (2007) Modelling of Cu, Ni, Zn, Mn and Pb transport from soil to seedlings of coniferous and leafy trees. J Environ Eng Landsc 15:200–207

    Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability: a mechanistic approach. Wiley, New York, NY

    Google Scholar 

  • Barceló J, Poschenrieder C (2003) Phytoremediation: principles and perspectives. Contributions to Science 2. Institutd’ Estudis Catalans, Barcelona, pp 333–344

    Google Scholar 

  • Bar-Tal A, Bar-Yosef B, Chen Y (1991) Validation of a model of the transport of zinc to an artificial root. J Soil Sci 42:399–411

    CAS  Google Scholar 

  • Bar-Yosef B, Fishman S, Talpaz H (1980) A model of zinc movement to single roots in soils. Soil Sci Soc Am J 44:1271–1279

    Google Scholar 

  • Bell RM (1992) Higher plant accumulation of organic pollutants from soils. Environmental Protection Agency (EPA/600/R-92/138), Cincinnati, USA

    Google Scholar 

  • Bergmann W (1988) ErnährungsstörungenbeiKulturpflanzen. Entstehung, visuelle and analytische Diagnose. Gustav Fischer, Jena, Germany

    Google Scholar 

  • Bhainsa KC, D’Souza SF (2001) Uranium(VI) biosorption by dried roots of Eichhornia crassipes (Water Hyacinth). J Environ Sci Heal A 36:1621–1631

    CAS  Google Scholar 

  • Biondini M (2001) A three-dimensional spatial model for plant competition in an heterogeneous soil environment. Ecol Model 142:189–225

    Google Scholar 

  • Brennan MA (1997) Modeling uptake of lead (Pb) by maize for the purpose of phytoextraction. M.S. Thesis, Defense Technical Information Center, Air Force Institute of Technology

    Google Scholar 

  • Brennan MA, Shelley ML (1999) A model of the uptake, translocation, and accumulation of lead (Pb) by maize for the purpose of phytoextraction. Ecol Eng 12:271–297

    Google Scholar 

  • Briat J-F, Lebrun M (1999) Plant responses to metal toxicity. Life Sci 322:43–54

    CAS  Google Scholar 

  • Buckley EH (1982) Accumulation of airborne polychlorinated biphenyls in foliage. Science 216:520–522

    CAS  PubMed  Google Scholar 

  • Campbell PGC (1995) Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. In: Tessier A, Turner DR (eds) Metal speciation and bioavailability in aquatic systems. John Wiley, New York, NY

    Google Scholar 

  • Chen JP, Chen WR, Hsu RC (1996) Biosorption of copper from aqueous solutions by plant root tissues. J Ferment Bioeng 81:458–463

    CAS  Google Scholar 

  • Chen B-C, Lai H-Y, Juang K-W (2012) Model evaluation of plant metal content and biomass yield for the phytoextraction of heavy metals by switch grass. Ecotoxicol Environ Saf 80:393–400

    CAS  PubMed  Google Scholar 

  • Chrysafopoulou E, Kadukova J, Kalogerakis N (2005) A whole-plant mathematical model for the phytoextraction of lead (Pb) by maize. Environ Int 31:255–262

    CAS  PubMed  Google Scholar 

  • Cui S, Zhou Q, Chao L (2007) Potential hyperaccumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smeltery, northeast China. Environ Geol 51:1043–1048

    CAS  Google Scholar 

  • Darrah PR, Jones DL, Kirk GJD, Roose T (2006) Modelling the rhizosphere: a review of methods for ‘upscaling’ to the whole-plant scale. Eur J Soil Sci 57:13–25

    Google Scholar 

  • Dasgupta-Schubert N, Barrera MG, Alvarado CJ, Castillo OS, Zaragoza EM, Alexander S, Landsberger S, Robinson S (2011) The uptake of copper by Aldamadentata: ecophysiological response, its modelling and the implication for phytoremediation. Water Air Soil Pollut 220:37–55

    CAS  Google Scholar 

  • Datta SP, Young SD (2005) Predicting metal uptake and risk to the human food chain from leaf vegetables grown on soils amended by long-term application of sewage sludge. Water Air Soil Pollut 163:119–136

    CAS  Google Scholar 

  • De Leo G, Del Furia L, Gatto M (1993) The interaction between soil acidity and forest dynamics: a simple model exhibiting catastrophic behavior. Theor Popul Biol 43:31–51

    Google Scholar 

  • Degryse F, Shahbazi A, Verheyen L, Smolders E (2012) Diffusion limitations in root uptake of cadmium and zinc, but not nickel, and resulting bias in the Michaelis constant. Plant Physiol 160:1097–1109

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dordas C, Brown PH (2002) Permeability and channel-mediated transport of boric acid across plant membranes. An explanation for differential B uptake in plants. In: Horst WJ et al (eds) Plant nutrition – food security and sustainability of agro-ecosystems. Kluwer, Dordrecht

    Google Scholar 

  • Doussan C, Pages L, Vercambre G (1998) Modelling of the hydraulic architecture of root systems: an integrated approach to water absorption – model description. Ann Bot 81:213–223

    Google Scholar 

  • Feddes RA, Kowalik PJ, Zaradny H (1978) Simulation of field water use and crop yield. Pudoc, Wageningen

    Google Scholar 

  • Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation. J Biotechnol 9:259–278

    Google Scholar 

  • Fitz WJ, Wenzel WW, Zhang H, Nurmi J, Štípek K, Fischerová Z, Schweiger P, Köllensperger G, Ma LQ, Stingeder G (2003) Rhizosphere characteristics of the arsenic hyperaccumulator Pterisvittata L. and monitoring of phytoremoval efficiency. Environ Sci Technol 37:5008–5014

    CAS  PubMed  Google Scholar 

  • Gardner WR (1960) Dynamic aspects of water availability to plants. Soil Sci 89:63–73

    Google Scholar 

  • Geelhoed JS, Van Riemsdijk WH, Findenegg GR (1999) Simulation of the effect of citrate exudation from roots on the plant availability of phosphate adsorbed on goethite. Eur J Soil Sci 50:379–390

    CAS  Google Scholar 

  • Gonnelli C, Marsili-Libelli S, Baker AJM, Gabbrielli R (2000) Assessing plant phytoextraction potential through mathematical modeling. Int J Phytoremediation 2:343–351

    CAS  Google Scholar 

  • Guala SD, Vega FA, Covelo EF (2009) Modification of a soil–vegetation nonlinear interaction model with acid deposition for simplified experimental applicability. Ecol Model 220(18):2137–2141

    CAS  Google Scholar 

  • Guala SD, Vega FA, Covelo EF (2010a) The dynamics of heavy metals in plant-soil interactions. Ecol Model 221:1148–1152

    CAS  Google Scholar 

  • Guala SD, Vega FA, Covelo EF (2010b) Heavy metal concentrations in plants and different harvestable parts: a soil-plant equilibrium model. Environ Pollut 158:2659–2663

    CAS  PubMed  Google Scholar 

  • Guala SD, Vega FA, Covelo EF (2011) Development of a model to select plants with optimum metal phytoextraction potential. Environ Sci Pollut R 18:997–1003

    CAS  Google Scholar 

  • Guala SD, Vega FA, Covelo EF (2013) Modeling the plant-soil interaction in presence of heavy metal pollution and acidity variations. Environ Monit Assess 185:73–80

    CAS  PubMed  Google Scholar 

  • Gustafsson JP (2006) Visual MINTEQ, ver.2.40b.KTH (Royal Institute of Technology), Department of Land and Water Resources Engineering, Stockholm, Sweden. http://www.lwr.kth.se/English/OurSoftware/vminteq/#download. Accessed 21 Feb 2006

  • Gustafsson JP (2011) Visual MINTEQ version 3.0.KTH (Royal Institute of Technology), Department of Land and Water Resources Engineering, Stockholm, Sweden. http://www2.lwr.kth.se/English/OurSoftware/vminteq. Accessed 20 July 2013

  • Hansen AT, Stark RA, Hondzo M (2011) Uptake of dissolved nickel by Elodea Canadensis and epiphytes influenced by fluid flow conditions. Hydrobiologia 658:127–138

    CAS  Google Scholar 

  • Harris WR, Sammons RD, Grabiak RC (2012) A speciation model of essential trace metal ions in phloem. J Inorg Biochem 116:140–150

    CAS  PubMed  Google Scholar 

  • Hilbold AE (1975) Behaviour of organoarsenicals in plants and soils. In: Woolson EA (ed) Arsenical pesticides. American Chemical Society Symposium, Washington, DC

    Google Scholar 

  • Hillel D (1998) Environmental soil physics. Academic Press, San Diego, CA

    Google Scholar 

  • Hopmans JW, Bristow KL (2002) Current capabilities and future needs of root water and nutrient uptake modeling. Adv Agron 77:104–175

    Google Scholar 

  • Hough RL, Tye AM, Crout NMJ, McGrath SP, Zhang H, Young SD (2005) Evaluating a ‘free ion activity model’ applied to metal uptake by Loliumperenne L. grown in contaminated soils. Plant Soil 270:1–12

    CAS  Google Scholar 

  • Hung H, Mackay D (1997) A novel and simple model for the uptake of organic chemicals from soil. Chemosphere 35:959–977

    CAS  PubMed  Google Scholar 

  • Ingwersen J, Streck T (2005) A regional-scale study on the crop uptake of cadmium from sandy soils: measurement and modeling. J Environ Qual 34:1026–1035

    CAS  PubMed  Google Scholar 

  • Jain JS, Snoeyink VL (1973) Adsorption from biosolute systems on active carbon. J Water Pollut Control Fed 45:2463–2479

    CAS  Google Scholar 

  • Jankaite A (2009) Soil remediation from heavy metals using mathematical modeling. J Environ Eng Landsc Manag 17:121–129

    Google Scholar 

  • Javaux M, Schröder T, Vanderborght J, Vereecken H (2008) Use of a three-dimensional detailed modeling approach for predicting root water uptake. Vadose Zone J 7:1079–1088

    Google Scholar 

  • Johnson A, Singhal N (2007) Modelling the role of plants for metal removal in stormwater bioretention systems. NOVATECH 2007. http://documents.irevues.inist.fr/handle/2042/25409. Accessed 20 July 2013

  • Jones DL (1998) Organic acids in the rhizosphere – a critical review. Plant Soil 205:25–44

    CAS  Google Scholar 

  • Juang K-W, Lai H-Y, Chen B-C (2011) Coupling bioaccumulation and phytotoxicity to predict copper removal by switchgrass grown hydroponically. Ecotoxicology 20:827–835

    CAS  PubMed  Google Scholar 

  • Jungk AO (2002) Dynamics of nutrient movement at the soil-root interface. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots, the hidden half, 3rd edn. Taylor & Francis, New York, NY

    Google Scholar 

  • Kabata-Pendias A (2011) Trace elements in soils and plants. CRC/Taylor and Francis Group, Boca Raton, FL

    Google Scholar 

  • Khan AR, Ataullah R, Al-Haddad A (1997) Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures. J Colloid Interface Sci 194:154–165

    CAS  PubMed  Google Scholar 

  • Komárek M, Tlustoš P, Száková J, Chrastný V, Ettler V (2007) The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils. Chemosphere 67:640–651

    PubMed  Google Scholar 

  • Komárek M, Tlustoš P, Száková J, Chrastný V (2008) The use of poplar during a two-year induced phytoextraction of metals from contaminated agricultural soils. Environ Pollut 151:27–38

    PubMed  Google Scholar 

  • Komárek M, Vaněk A, Száková J, Balík J, Chrastný V (2009) Interactions of EDDS with Fe- and Al-(hydr)oxides. Chemosphere 77:87–93

    PubMed  Google Scholar 

  • Komárek M, Michálková Z, Száková J, Vaněk A, Grygar T (2011) Evolution of bioavailable copper and major soil cations in contaminated soils treated with ethylenediaminedisuccinate: a two-year experiment. Bull Environ Contam Toxicol 86(5):525–530

    PubMed  Google Scholar 

  • Kramer PJ, Boyer JS (1995) Water relations in plants and soils. Academic Press, San Diego, CA

    Google Scholar 

  • Lefèvre I, Correal E, Lutts S (2010) Impact of cadmium and zinc on growth and water status of Zygophyllum fabago in two contrasting metallicolous populations from SE Spain: comparison at whole plant and tissue level. Plant Biol 12:883–894

    PubMed  Google Scholar 

  • Lehto NJ, Davison W, Zhang H, Wlodek T (2006) Analysis of micronutrient behaviour in the rhizosphere using a DGT parameterized dynamic plant uptake model. Plant Soil 282:227–238

    CAS  Google Scholar 

  • Lesage E, Mundia C, Rousseau DPL, Van de Moortel AMK, Du Laing G, Meers E, Tack FMG, De Pauw N, Verloo MG (2007) Sorption of Co, Cu, Ni and Zn from industrial effluents by the submerged aquatic macrophyte Myriophyllum spicatum L. Ecol Eng 30:320–325

    Google Scholar 

  • Li MS, Luo YP, Su ZY (2007) Heavy metal concentrations in soils and plant accumulation in a restored manganese mineland in Guangxi, South China. Environ Pollut 147:168–175

    CAS  PubMed  Google Scholar 

  • López-Chuken UJ, Young SD, Sánchez-González MN (2010) The use of chloro-complexation to enhance cadmium uptake by Zea mays and Brassica juncea: testing a “free ion activity model” and implications for phytoremediation. Int J Phytoremediat 12:680–696

    Google Scholar 

  • Luxmoore RJ, Begovich CL, Dixon KR (1978) Modelling solute uptake and incorporation into vegetation and litter. Ecol Model 5:137–171

    CAS  Google Scholar 

  • Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109:7–13

    PubMed Central  CAS  PubMed  Google Scholar 

  • Manzoni S, Molini A, Porporato A (2011) Stochastic modelling of phytoremediation. Proc R Soc A 467:3188–3205

    Google Scholar 

  • Maxted AP, Black CR, West HM, Crout NMJ, McGrath SP, Young SD (2007) Phytoextraction of cadmium and zinc from arable soils amended with sewage sludge using Thlaspi caerulescens: development of a predictive model. Environ Pollut 150:363–372

    CAS  PubMed  Google Scholar 

  • May PM, Linder PW, Williams DR (1977) Computer simulation of metal-ion equilibria in biofluids: models for the low-molecular-weight complex distribution of calcium(II), magnesium(II), manganese(II), iron(III), copper(II), zinc(II), and lead(II) ions in human blood plasma. J Chem Soc Dalton Trans, pp 588–595

    Google Scholar 

  • Meers E, Ruttens A, Hopgood MJ, Samson D, Tack FMG (2005) Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere 58: 1011–1022

    CAS  PubMed  Google Scholar 

  • Meeussen JCL (2003) ORCHESTRA: an object-oriented framework for implementing chemical equilibrium models. Environ Sci Technol 37:1175–1182

    CAS  PubMed  Google Scholar 

  • Meighan MM, Fenus T, Karey E, MacNeil J (2011) The impact of EDTA on the rate of accumulation and root/shoot partitioning of cadmium in mature dwarf sunflowers. Chemosphere 83:1539–1545

    CAS  PubMed  Google Scholar 

  • Mench M, Schwitzguébel J-P, Schroeder P, Bert V, Gawronski S, Gupta S (2009) Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification, and sequestration, and consequences to food safety. Environ Sci Pollut Res 16:876–900

    CAS  Google Scholar 

  • Mengel K, Kirkby EA (1987) Principles of plant nutrition. Kluwer, Dordrecht

    Google Scholar 

  • Molz FJ (1975) Comments on “Water transport through plant cells and cell walls: theoretical development”. Soil Sci Soc Am J 39:597

    Google Scholar 

  • Neumann G, Romheld V (2002) Root-induced changes in the availability of nutrients in the rhizosphere. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots, the hidden half, 3rd edn. Taylor & Francis, New York, NY

    Google Scholar 

  • Nissen P (1996) Uptake mechanism. In: Waisel Y, Eshel A, Kafkkafi U (eds) Plant roots, the hidden half, 3rd edn. Taylor & Francis, New York, NY

    Google Scholar 

  • Nowack B, Lützenkirchen J, Behra P, Sigg L (1996) Modeling the adsorption of metal-EDTA complexes onto oxides. Environ Sci Technol 30:2397–2405

    CAS  Google Scholar 

  • Nowack B, Mayer KU, Oswald SE, van Beinum W, Appelo CAJ, Jacques D, Seuntjens P, Gérard F, Jaillard B, Schnepf A, Roose T (2006) Verification and intercomparison of reactive transport codes to describe root-uptake. Plant Soil 285:305–321

    CAS  Google Scholar 

  • Oliveira H (2012) Chromium as an environmental pollutant: insights on induced plant toxicity. J Bot, doi:10.1155/2012/375843

  • Ouyang Y (2005) Phytoextraction: simulating uptake and translocation of arsenic in a soil-plant system. Int J Phytoremediat 7:3–17

    CAS  Google Scholar 

  • Parker DR, Norvell WA, Chaney RL (1995) GEOCHEM-PC: a chemical speciation program for IBM and compatible personal computers. In: Loeppert RH et al. (eds) Chemical equilibrium and reaction models. Soil Science Society of America, Special Publication 42, Madison

    Google Scholar 

  • Parker DR, Pedler JF, Ahnstrom AS, Resketo M (2001) Reevaluating the free-ion activity model of trace metal toxicity toward higher plants: experimental evidence with copper and zinc. Environ Toxicol Chem 20:899–906

    CAS  PubMed  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2) – a computer program for speciation, batch-reaction, one-dimensional transport and inverse geochemical calculations. U.S. Geol Surv Wat Res Inv Rep 99-4259

    Google Scholar 

  • Raats PAC (1974) Distribution of salts in the root zone. J Hydrol 99:297–306

    Google Scholar 

  • Rao S, Mathur S (1994) Modeling heavy metal (Cadmium) uptake by soil‐plant root system. J Irrig Drainage Eng ASCE 120:89–96

    Google Scholar 

  • Rauser WE (1999) Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin and metallothioneins. Cell Biochem Biophys 32:19–48

    Google Scholar 

  • Redjala T, Sterckeman T, Morel JL (2009) Cadmium uptake by roots: contribution of apoplast and of high- and low-affinity membrane transport systems. Environ Exp Bot 67:235–242

    CAS  Google Scholar 

  • Redjala T, Sterckeman T, Skiker S, Echevarria G (2010) Contribution of apoplast and symplast to short term nickel uptake by maize and Leptoplax emarginata roots. Environ Exp Bot 68:99–106

    CAS  Google Scholar 

  • Russell RS (1977) Plant root systems: their function and interaction with the soil. McGraw-Hill, London

    Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560

    CAS  PubMed  Google Scholar 

  • Samsøe-Petersen L, Rasmussen D, Trapp S (2003) Modellering af optagelse af organiske stoffer i grøntsager og frugt. Report 765. Danish Environmental Protection Agency, Copenhagen (In Danish with English summary). http://www2.mst.dk/udgiv/publikationer/2003/87-7972-472-8/pdf/87-7972-473-6.pdf. Accessed 20 July 2013

  • Sánchez-Galván G, Monroy O, Gómez J, Olguín EJ (2008) Assessment of the hyperaccumulating lead capacity of Salvinia minima using bioadsorption and intracellular accumulation factors. Water Air Soil Pollut 194:77–90

    Google Scholar 

  • Santa-María GE, Cogliatti DH (1988) Bidirectional Zn-fluxes and compartmentation in wheat seedling roots. J Plant Physiol 132:312–315

    Google Scholar 

  • Sauvé S, Dumestre A, McBride M, Hendershot W (1998) Derivation of soil quality criteria using predicted chemical speciation of Pb2+ and Cu2+. Environ Toxicol Chem 17:1481–1489

    Google Scholar 

  • Schaider LA, Parker DR, Sedlak DL (2006) Uptake of EDTA-complexed Pb, Cd and Fe by solution- and sand-cultured Brassica juncea. Plant Soil 286:377–391

    CAS  Google Scholar 

  • Schmidt MA, Gonzalez JM, Halvorson JJ, Hagerman AE (2013) Metal mobilization in soil by two structurally defined polyphenols. Chemosphere 90:1870–1877

    CAS  PubMed  Google Scholar 

  • Seuntjens P, Nowack B, Schulin R (2004) Root-zone modeling of heavy metal uptake and leaching in the presence of organic ligands. Plant Soil 265:61–73

    CAS  Google Scholar 

  • Shaff JE, Schultz BA, Craft EJ, Clark RT, Kochian LV (2010) GEOCHEM-EZ: a chemical speciation program with greater power and flexibility. Plant Soil 330:207–214

    CAS  Google Scholar 

  • Shelmerdine PA, Black CR, McGrath SP, Young SD (2009) Modelling phytoremediation by the hyperaccumulating fern, Pterisvittata, of soils historically contaminated with arsenic. Environ Pollut 157:1589–1596

    CAS  PubMed  Google Scholar 

  • Silberbush M (2002) Simulation of ion uptake from the soil. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots, the hidden half, 3rd edn. Taylor & Francis, New York, NY

    Google Scholar 

  • Šimůnek J, Hopmans JW (2009) Modeling compensated root water and nutrient uptake. Ecol Model 220:505–521

    Google Scholar 

  • Somma F, Clausnitzer V, Hopmans JW (1998) Modeling of transient three-dimensional soil water and solute transport with root growth and water and nutrient uptake. Plant Soil 202:281–293

    CAS  Google Scholar 

  • Sparks DL (1995) Environmental soil chemistry. Academic Press, San Diego, CA

    Google Scholar 

  • Sternberg SPK (2007) Phytoremediation with living aquatic plants: development and modelling of experimental observations. In: Willey N (ed) Phytoremediation: methods and reviews 23. Humana, Totowa, NJ

    Google Scholar 

  • Steudle E, Oren R, Schulze ED (1987) Water transport in maize roots. Plant Physiol 84:1220–1232

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stritsis C, Steingrobe B, Claassen N (2013) Cadmium dynamics in the rhizosphere and Cd uptake of different plant species evaluated by a mechanistic model. Int J Phytoremediat, doi:10.1080/15226514.2013.821445

  • Sun G, Shi W (1998) Sunflower stalks as adsorbents for the removal of metal ions from wastewater. Ind Eng Chem Res 37:1324–1328

    CAS  Google Scholar 

  • Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng, doi:10.1155/2011/939161

  • Thomas DM, Vandemuelebroeke L, Yamaguchi K (2005) A mathematical evolution model for phytoremediation of metals. Discrete Contin Dyn Syst Ser B 5:411–422

    Google Scholar 

  • Tipping E (1994) WHAM-A chemical equilibrium model and computer code for waters, sediments, and soils incorporating a discrete site/electrostatic model of ion-binding by humic substances. Comput Geosci 20:973–1023

    CAS  Google Scholar 

  • Trakal L, Kodešová R, Komárek M (2013) Modelling of Cd, Cu, Pb and Zn transport in metal contaminated soil and their uptake by willow (Salix × smithiana) using HYDRUS-2D program. Plant Soil 366:433–451

    CAS  Google Scholar 

  • Trapp S (2000) Modeling uptake into roots and subsequent translocation of neutral and ionisable organic compounds. Pest Manag Sci 56:767–778

    CAS  Google Scholar 

  • Trapp S (2004) Plant uptake and transport models for neutral and ionic chemicals. Environ Sci Pollut Res 11:33–39

    CAS  Google Scholar 

  • Trapp S, Matthies M (1995) Generic one-compartment model for uptake of organic chemicals by foliar vegetation. Environ Sci Technol 29:2333–2338 (erratum 30, 360)

    CAS  PubMed  Google Scholar 

  • Trapp S, Rasmussen D, Samsøe-Petersen L (2003) Fruit tree model for uptake of organic compounds from soil. SAR QSAR Environ Res 14:17–26

    CAS  PubMed  Google Scholar 

  • Uysal Y, Taner F (2009) Effect of pH, temperature, and lead concentration on the bioremoval of lead from water using Lemna minor. Int J Phytoremediat 11:591–608

    CAS  Google Scholar 

  • Uysal Y, Taner F (2010) Bioremoval of cadmium by Lemna minor in different aquatic conditions. Clean Soil Air Water 38:370–377

    CAS  Google Scholar 

  • van Leeuwen HP (1999) Metal speciation dynamics and bioavailability: inert and labile complexes. Environ Sci Technol 33:3743–3748

    Google Scholar 

  • Verhulst PF (1838) Notice sur la loi que la population pursuit dans son accroisement. Correspondance Mathematique et Physique 10:113–121

    Google Scholar 

  • Verma P, George KV, Singh HV, Singh SK, Juwarkar A, Singh RN (2006) Modeling rhizofiltration: heavy-metal uptake by plant roots. Environ Model Assess 11:387–394

    Google Scholar 

  • Vijayaraghavan K, Padmesh TVN, Palanivelu K, Velan M (2006) Biosorption of nickel(II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models. J Hazard Mater B133:304–308

    Google Scholar 

  • Villaescusa I, Fiol N, Martínez M, Miralles N, Poch J, Serarols J (2004) Removal of copper and nickel ions from aqueous solutions by grape stalks wastes. Water Res 38:992–1002

    CAS  PubMed  Google Scholar 

  • Vrugt JA, Hopmans JW, Šimůnek J (2001a) Calibration of a two-dimensional root water uptake model. Soil Sci Soc Am J 65: 1027–1037

    CAS  Google Scholar 

  • Vrugt JA, van Wijk MT, Hopmans JW, Šimunek J (2001b) One-, two-, and three-dimensional root water uptake functions for transient modeling. Water Resour Res 37:2457–2470

    Google Scholar 

  • Wang J, Evangelou BP, Nielsen MT (1992) Surface chemical properties of purified roots cell walls from two tobacco genotypes exhibiting different tolerance to manganese toxicity. Plant Physiol 100:496–501

    PubMed Central  CAS  PubMed  Google Scholar 

  • Westall JC, Zachara JL, Morel FMM (1972) MINEQL, a computer program for the calculation of the chemical equilibrium composition of aqueous systems. Department of Civil Engineering, Massachusetts Institute of Technology, Technical Note No. 18

    Google Scholar 

  • Whiting SN (1998) Metal mobilisation and uptake by the zinc hyperaccumulator Thlaspi caerulescens J. and C. Presl. PhD Thesis, University of Sheffield, UK

    Google Scholar 

  • Whiting SN, Broadley MR, White PJ (2003) Applying a solute transfer model to phytoextraction: zinc acquisition by Thlaspi caerulescens. Plant Soil 249:45–56

    CAS  Google Scholar 

  • Wilkinson KJ, Buffle J (2004) Critical evaluation of physicochemical parameters and processes for modelling the biological uptake of trace metals in environmental (aquatic) systems. In: van Leeuwen HP, Köster W (eds) Physicochemical kinetics and transport at biointerfaces. John Wiley, Chichester

    Google Scholar 

  • Wu Y, Hendershot WH (2010a) Effect of calcium and pH on copper binding and rhizotoxicity to pea (Pisum sativum L.) root: empirical relationships and modelling. Arch Environ Contam Toxicol 59:109–119

    CAS  PubMed  Google Scholar 

  • Wu Y, Hendershot WH (2010b) The effect of calcium and pH on nickel accumulation in and rhizotoxicity to pea (Pisum sativum L.) root-empirical relationships and modeling. Environ Pollut 158:1850–1856

    CAS  PubMed  Google Scholar 

  • Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464

    CAS  PubMed  Google Scholar 

  • Zhang H, Davison H (2006) Predicting metal uptake by plants using the DGT technique. In: Twardowska I, Allen HE, Häggblom MM, Stefaniak S (eds) Soil and water pollution monitoring, protection and remediation. Springer, Netherlands

    Google Scholar 

  • Zhang H, Zhao F, Sun B, Davison W, McGrath SP (2001) A new method to measure effective soil solution concentration predicts copper availability to plants. Environ Sci Technol 35:2602–2607

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

 The authors are grateful for financial support from the projects Postdok ČZU (Ministry of Education of the Czech Republic, ESF/MŠMT CZ.1.07/2.3.00/30.0040), GAČR P503/11/0840 (Czech Science Foundation), GAČR 14-02183P (also Czech Science Foundation) and COST CZ LD13068 (Czech Ministry of Education, Youth and Sports). Additionally, the authors acknowledge Dr. David J. Walker for correction of the English in this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukáš Trakal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Trakal, L., Martínez-Fernández, D., Vítková, M., Komárek, M. (2015). Phytoextraction of Metals: Modeling Root Metal Uptake and Associated Processes. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-10395-2_6

Download citation

Publish with us

Policies and ethics