Skip to main content

Memristors as Synapses in Artificial Neural Networks: Biomimicry Beyond Weight Change

  • Chapter
  • First Online:
Cybersecurity Systems for Human Cognition Augmentation

Abstract

Cyberthreat security is a rapidly evolving landscape, where the diversity and number of attacks is constantly changing, requiring new approaches to defense. In the past, it was sufficient to predict likely attack methods and to monitor potential vulnerabilities, however, today the attacks are too varied and change too quickly for the traditional defenses to be effective. We need structures that are capable of identifying probable attacks and responding without human intervention. Due to the increasing rate of new attack methodologies, these structures need to be able to identify and respond to attacks that have never been seen before. That is, we need structures which are capable of learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.S. Mcculloch, W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” Bulletin of Mathematical Biophysics, 5, 115-133 (1943).

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Kozma, R.E. Pino, G.E. Pazienza, “Advances in Neuromorphic Memristor Science and Applications,” Springer (2012).

    Google Scholar 

  3. L.O. Chua, “Memristor – the missing circuit element,” IEEE Transactions on Circuit Theory, 18, 507-519 (1971).

    Article  Google Scholar 

  4. L.O. Chua, S.M. Kang, “Memristive Devices and Systems,” Proceedings of the IEEE, 64, 209-223 (1976).

    Article  MathSciNet  Google Scholar 

  5. T. Prodromakis, C. Toumazou, L. Chua, “Two centuries of memristors,” Nature Materials, 11, 478-481 (2012).

    Article  Google Scholar 

  6. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, “The missing memristor found,” Nature, 453, 80-83 (2008).

    Article  Google Scholar 

  7. C. Cagli, D. Ielmini, F. Nardi, A.L. Lacaita, “Evidence for threshold switching in the set process of NiO-based RRAM and physical modeling for set, reset, retention and disturb prediction,” IEEE International Electron Devices Meeting, p 1-4 (2008).

    Google Scholar 

  8. S. Murali, J.S. Rajachidambaram, S.-Y. Han, C.-H. Chang, G.S. Herman, J.F. Conley Jr, “Resistive switching in zinc-tin-oxide,” Solid-State Electronics, 79, 248-252 (2013).

    Article  Google Scholar 

  9. M.D. Pickett, D.B. Strukov, J.L. Borghetti, J.J. Yang, G.S. Snider, D.R. Stewart, R.S. Williams, “Switching dynamics in titanium dioxide memristive devices,” Journal of Applied Physics, 106, 074508 (2009).

    Article  Google Scholar 

  10. B.J. Choi, J.J. Yang, M.-X. Zhang, K.J. Norris, D.A.A. Ohlberg, N.P. Kobayashi, G. Medeiros-Ribeiro, R.S. Williams, “Nitride memristors,” Applied Physics A, 109, 1-4 (2012).

    Article  Google Scholar 

  11. M.J. Marinella, J.E. Stevens, E.M. Longoria, P.G. Kotula, “Resistive switching in aluminum nitride,” Device Research Conference, 89-90 (2012).

    Google Scholar 

  12. M. Mitkova, M.N. Kozicki, “Silver incorporation in Ge-Se glasses used in programmable metallization cell devices,” Journal of Non-Crystalline Solids, 299-302, 1023-1027 (2002).

    Google Scholar 

  13. M.N. Kozicki, M. Balakrishnan, C. Gopalan, C. Ratnakumar, M. Mitkova, “Programmable Metallization Cell Memory Based on Ag-Ge-S and Cu-Ge-S Solid Electrolytes,” Non-Volatile Memory Technology Symposium, 83-89 (2005).

    Google Scholar 

  14. R. Waser, M. Aono, “Nanoionics-based resistive switching memories,” Nature Materials, 6, 833-840 (2007).

    Article  Google Scholar 

  15. L.O. Chua, “Resistance switching memories are memristors,” Applied Physics A, 102, 765-783 (2011).

    Article  Google Scholar 

  16. J.J. Yang, D.B. Strukov, D.R. Stewart, “Memristive devices for computing,” Nature Nanotechnology, 8, 13-24 (2013).

    Article  Google Scholar 

  17. H.S.P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F.T. Chen, M.-J. Tsai, “Metal-Oxide RRAM,” Proceedings of the IEEE, 100, 1951-1970 (2012).

    Article  Google Scholar 

  18. J. Hutchby, M. Garner, “Assessment of the Potential & Maturity of Selected Emerging Research Memory Technologies Workshop & ERD/ERM Working Group Meeting,” (2010).

    Google Scholar 

  19. P.R. Mickel, A.J. Lohn, B.J. Choi, J.J. Yang, M.-X. Zhang, M.J. Marinella, C.D. James, R.S. Williams, “A physical model of switching dynamics in tantalum oxide memristive devices,” Applied Physics Letters, 102, 223502 (2013).

    Article  Google Scholar 

  20. J.P. Strachan, A.C. Torrezan, F. Miao, M.D. Pickett, J.J. Yang, W. Yi, G. Medeiros-Ribeiro, R.S. Williams, “State Dynamics and Modeling of Tantalum Oxide Memristors,” IEEE Transactions on Electron Devices, 60, 2194-2202 (2013).

    Article  Google Scholar 

  21. A.J. Lohn, P.R. Mickel, M.J. Marinella, “Dynamics of percolative breakdown mechanism in tantalum oxide resistive switching,” Applied Physics Letters, 103, 173503 (2013).

    Article  Google Scholar 

  22. H.Y. Lee, Y.S. Chen, P.S. Chen, T.Y. Wu, F. Chen, C.C. Wang, P.J. Tzeng, M.-J. Tsai, C. Lien, “Low-Power and Nanosecond Switching in Robust Hafnium Oxide Resistive Memory With a Thin Ti Cap, IEEE Electron Device Letters, 31, 44-46 (2010).

    Article  Google Scholar 

  23. S. Lee, W.-G. Kim, S.-W. Rhee, K. Yong, “Resistance Switching Behaviors of Hafnium Oxide Films Grown by MOCVD for Nonvolatile Memory Applications,” Journal of the Electrochemical Society, 155, H92-H96 (2008).

    Article  Google Scholar 

  24. D.O. Hebb, “The Organization of Behvior: A Neuropsychological Theory,” Wiley, (1949).

    Google Scholar 

  25. I.E. Ebong, P. Mazumder, “CMOS and Memristor-Based Neural Network Design for Position Detection,” Proceedings of the IEEE, 100, 2050-2060 (2012).

    Article  Google Scholar 

  26. A. Thomas, “Memristor-based neural networks,” Journal of Physics D: Applied Physics, 46, 093001 (2013).

    Article  Google Scholar 

  27. N. Brunel, V. Hakim, “Fast Global Oscillations in Networks of Integrate-and-Fire Neurons with low Firing Rates,” Neural Computation, 11, 1621-1671 (1999).

    Article  Google Scholar 

  28. A.L. Hodgkin, A.F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” The Journal of Physiology 117 (4) 500-544 (1952).

    Google Scholar 

  29. M.D. Pickett, G. Medeiros-Ribeiro, R.S. Williams, “A scalable neuristor built with Mott memristors,” Nature Materials, 12, 114-117 (2012).

    Article  Google Scholar 

  30. C. Clopath, W. Gerstner, “Voltage and spike timing interact in STDP – a unified model,” Frontiers in Synaptic Neuroscience, 2, 1-11 (2010).

    Google Scholar 

  31. N. Caporale, Y. Dan, “Spike Timing-Dependent Plasticity: A Hebbian Learning Rule,” Annual Review of Neuroscience, 31, 25-46 (2008).

    Article  Google Scholar 

  32. D.E. Feldman, “The Spike-Timing Dependence of Plasticity,” Neuron, 75, 556-571 (2012).

    Article  Google Scholar 

  33. S. Ambrogio, S. Balatti, F. Nardi, S. Facchinetti, D. Ielmini, “Spike-timing dependent plasticity in a transistor-selected resistive switching memory,” Nanotechnology, 24, 384012 (2013).

    Article  Google Scholar 

  34. F. Miao, J.P. Strachan, J.J. Yang, M.-X. Zhang, I. Goldfarb, A.C. Torrezan, P. Eschbach, R.D. Kelley, G. Medeiros-Ribeiro, R.S. Williams, “Anatomy of a Nanoscale Conduction Channel Reveals the Mechanism of a High-Performance Memristor,” Advanced Materials, 23, 5633-5640 (2011).

    Article  Google Scholar 

  35. G.-S. Park, Y.B. Kim, S.Y. Park, X.S. Li, S. heo, M.-J. Lee, M. Chang, J.H. Kwon, M. Kim, U.-I. Chung, R. Dittmann, R. Waser, K. Kim, “In situ observation of filamentary conducting channels in an asymmetric Ta2O5-x/TaO2-x bilayer structure,” Nature Communications, 4, 1-9 (2013).

    Google Scholar 

  36. D.B. Strukov, F. Alibart, R.S. Williams, “Thermophoresis/diffusion as a plausible mechanism for unipolar resistive switching in metal-oxide-metal memristors,” Applied Physics A, 107, 509-518 (2012).

    Article  Google Scholar 

  37. F. Miao, W. Yi, I. Goldfarb, J.J. Yang, M.-X. Zhang, M.D. Pickett, J.P. Strachan, G. Medeiros-Ribeiro, R.S. Williams, “Continuous Electrical Tuning of the Chemical Composition of TaOx-Based Memristors,” ACS Nano, 6, 2312-2318 (2012).

    Article  Google Scholar 

  38. P.R. Mickel, A.J. Lohn, M.J. Marinella, “Isothermal Switching and Detailed Filament Evolution in Memristive Systems,” Advanced Materials, 26, 4486-4490 (2014).

    Google Scholar 

  39. A.J. Lohn, P.R. Mickel, C.D. James, M.J. Marinella, “Degenerate Resistive Switching and Ultrahigh Density Storage in Resistive Memory,” Applied Physics Letters, 105, 103501 (2014).

    Google Scholar 

  40. P.R. Mickel, A.J. Lohn, M.J. Marinella, “Precise electrical control of nanoscale resistive filament geometry,” unpublished (2013).

    Google Scholar 

  41. D.F. Marrone, T.L. Petit, “The role of synaptic morphology in neural plasticity: structural interactions underlying synaptic power,” Brain Research Reviews, 38, 291-308 (2002).

    Article  Google Scholar 

  42. R. Yuste, T. Bonhoeffer, “Morphological Changes in Dendritic Spines Associated with Long-Term Synaptic Plasticity,” Annual Reviews of Neuroscience, 24, 1071-1089 (2001).

    Article  Google Scholar 

  43. R. Lamprecht, J. LeDoux, “Structural Plasticity and Memory,” Nature Reviews Neuroscience, 5, 45-54 (2004).

    Article  Google Scholar 

  44. H. Kasai, M. Fukuda, S. Watanabe, A. Hayashi-Takagi, J. Noguchi, “Structural dynamics of dendritic spines in memory and cognition,” Trends in Neurosciences, 33, 121-129 (2010).

    Article  Google Scholar 

  45. M. Matamales, “Neuronal activity-regulated gene transcription: how are distant synaptic signals conveyed to the nucleus?,” F1000Research, 1, 69 (2012).

    Google Scholar 

  46. S.N. Burke, C.A. Barnes, “Neural plasticity in the ageing brain,” Nature Reviews Neuroscience, 7, 30-40 (2006).

    Article  Google Scholar 

  47. F.H. Gage, “Neurogenesis in the Adult Brain,” The Journal of Neuroscience, 22, 612-613 (2002).

    Google Scholar 

  48. J.B. Aimone, J. Wiles, F.H. Gage, “Potential role for adult neurogenesis in the encoding of time in new memories,” Nature Neuroscience, 9, 723-727 (2006).

    Article  Google Scholar 

  49. I. Imayoshi, M. Sakamoto, T. Ohtsuka, K. Takao, T. Miyakawa, M. Yamaguchi, K. Mori, T. Ikeda, S. Itohara, R. Kageyama, “Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain,” Nature Neuroscience, 11, 1153-1161 (2008).

    Article  Google Scholar 

  50. C.D. Clelland, M. Choi, C. Romberg, G.D. Clemenson Jr, A. Fragniere, P. Tyers, S. Jessberger, L.M. Saksida, R.A. Barker, F.H. Gage, T.J. Bussey, “A Functional Role for Adult Hippocampal Neurogenesis in Spatial Pattern Separation,” Science, 325, 210-213 (2009).

    Article  Google Scholar 

  51. J.B. Aimone, J. Wiles, F.H. Gage, “Computational Influence of Adult Neurogenesis on Memory Encoding,” Neuron, 61, 187-202 (2009).

    Article  Google Scholar 

  52. Y. Li, J.B. Aimone, X. Xu, E.M. Callaway, F.H. Gage, “Development of GABAergic inputs controls the contribution of maturing neurons to the adult hippocampal network,” Proceedings of the National Academy of Science, 109, 4290-4295 (2012).

    Article  Google Scholar 

  53. R.A. Chambers, M.N. Potenza, R.E. Hoffman, W. Miranker, “Simulated Apoptosis/Neurogenesis Regulates Learning and Memory Capabilities of Adaptive Neural Networks,” Neuropsychopharmacology, 29, 747-758 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Lohn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lohn, A.J., Mickel, P.R., Aimone, J.B., Debenedictis, E.P., Marinella, M.J. (2014). Memristors as Synapses in Artificial Neural Networks: Biomimicry Beyond Weight Change. In: Pino, R., Kott, A., Shevenell, M. (eds) Cybersecurity Systems for Human Cognition Augmentation. Advances in Information Security, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-319-10374-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10374-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10373-0

  • Online ISBN: 978-3-319-10374-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics