Skip to main content

Cell Engineering for Therapeutic Protein Production

  • Chapter
  • First Online:
Animal Cell Culture

Part of the book series: Cell Engineering ((CEEN,volume 9))

Abstract

In order to meet the ever-growing demand for therapeutic proteins, high therapeutic protein productivity in mammalian cell culture is necessary. Cell engineering is one of the most effective and powerful ways to improve the production of therapeutic proteins. This chapter describes various strategies of engineering biotechnologically important mammalian cell lines, mainly Chinese hamster ovary (CHO) cells, to achieve high therapeutic protein productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afshari CA, Barrett JC (1994) Disruption of G0-G1 arrest in quiescent and senescent cells treated with phosphatase inhibitors. Cancer Res 54:2317–2321

    CAS  PubMed  Google Scholar 

  • Altamirano C, Paredes C, Cairo JJ, Godia F (2000) Improvement of CHO cell culture medium formulation: simultaneous substitution of glucose and glutamine. Biotechnol Prog 16:69–75

    CAS  PubMed  Google Scholar 

  • Arden N, Betenbaugh MJ (2004) Life and death in mammalian cell culture: strategies for apoptosis inhibition. Trends Biotechnol 22:174–180

    CAS  PubMed  Google Scholar 

  • Ashkenazi A (2002) Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2:420–430

    CAS  PubMed  Google Scholar 

  • Astley K, Al-Rubeai M (2008) The role of Bcl-2 and its combined effect with p21CIP1 in adaptation of CHO cells to suspension and protein-free culture. Appl Microbiol Biotechnol 78:391–399

    CAS  PubMed  Google Scholar 

  • Astley K, Naciri M, Racher A, Al-Rubeai M (2007) The role of p21cip1 in adaptation of CHO cells to suspension and protein-free culture. J Biotechnol 130:282–290

    CAS  PubMed  Google Scholar 

  • Baneyx F (2004) Keeping up with protein folding. Microb Cell Fact 3:6

    PubMed Central  PubMed  Google Scholar 

  • Barnes LM, Dickson AJ (2006) Mammalian cell factories for efficient and stable protein expression. Curr Opin Biotechnol 17:381–386

    CAS  PubMed  Google Scholar 

  • Becker E, Florin L, Pfizenmaier K, Kaufmann H (2008) An XBP-1 dependent bottle-neck in production of IgG subtype antibodies in chemically defined serum-free Chinese hamster ovary (CHO) fed-batch processes. J Biotechnol 135:217–223

    CAS  PubMed  Google Scholar 

  • Bi JX, Shuttleworth J, Al-Rubeai M (2004) Uncoupling of cell growth and proliferation results in enhancement of productivity in p21CIP1-arrested CHO cells. Biotechnol Bioeng 85:741–749

    CAS  PubMed  Google Scholar 

  • Bibila TA, Robinson DK (1995) In pursuit of the optimal fed-batch process for monoclonal antibody production. Biotechnol Prog 11:1–13

    CAS  PubMed  Google Scholar 

  • Borth N, Mattanovich D, Kunert R, Katinger H (2005) Effect of increased expression of protein disulfide isomerase and heavy chain binding protein on antibody secretion in a recombinant CHO cell line. Biotechnol Prog 21:106–111

    CAS  PubMed  Google Scholar 

  • Broker LE, Kruyt FAE, Giaccone G (2005) Cell death independent of caspases: a review. Clin Cancer Res 11:3155–3162

    PubMed  Google Scholar 

  • Butler M, Meneses-Acosta A (2012) Recent advances in technology supporting biopharmaceutical production from mammalian cells. Appl Microbiol Biotechnol 96:885–894

    CAS  PubMed  Google Scholar 

  • Carvalhal AV, Marcelino I, Carrondo MJ (2003) Metabolic changes during cell growth inhibition by p27 overexpression. Appl Microbiol Biotechnol 63:164–173

    CAS  PubMed  Google Scholar 

  • Chiang GG, Sisk WP (2005) Bcl-xL mediates increased production of humanized monoclonal antibodies in Chinese hamster ovary cells. Biotechnol Bioeng 91:779–792

    CAS  PubMed  Google Scholar 

  • Chong WP, Reddy SG, Yusufi FN, Lee DY, Wong NS, Heng CK, Yap MG, Ho YS (2010) Metabolomics-driven approach for the improvement of Chinese hamster ovary cell growth: overexpression of malate dehydrogenase II. J Biotechnol 147:116–121

    CAS  PubMed  Google Scholar 

  • Chung JY, Kim TK, Lee GM (2000) Morphological selection of parental Chinese hamster ovary cell clones exhibiting high-level expression of recombinant protein. Biotechniques 29:768–774

    CAS  PubMed  Google Scholar 

  • Chung JY, Lim SW, Hong YJ, Hwang SO, Lee GM (2004) Effect of doxycycline-regulated calnexin and calreticulin expression on specific thrombopoietin productivity of recombinant Chinese hamster ovary cells. Biotechnol Bioeng 85:539–546

    CAS  PubMed  Google Scholar 

  • Cotter T, Al-Rubeai M (1995) Cell death (apoptosis) in cell culture systems. Trends Biotechnol 13:150–155

    CAS  PubMed  Google Scholar 

  • Crea F, Sarti D, Falciani F, Al-Rubeai M (2006) Over-expression of hTERT in CHO K1 results in decreased apoptosis and reduced serum dependency. J Biotechnol 121:109–123

    CAS  PubMed  Google Scholar 

  • Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    CAS  PubMed  Google Scholar 

  • Davis R, Schooley K, Rasmussen B, Thomas J, Reddy P (2000) Effect of PDI overexpression on recombinant protein secretion in CHO cells. Biotechnol Prog 16:736–743

    CAS  PubMed  Google Scholar 

  • Degterev A, Boyce M, Yuan J (2003) A decade of caspases. Oncogene 22:8543–8567

    CAS  PubMed  Google Scholar 

  • Dez C, Tollervey D (2004) Ribosome synthesis meets the cell cycle. Curr Opin Microbiol 7:631–637

    CAS  PubMed  Google Scholar 

  • Doolan P, Meleady P, Barron N, Henry M, Gallagher R, Gammell P, Melville M, Sinacore M, McCarthy K, Leonard M, Charlebois T, Clynes M (2010) Microarray and proteomics expression profiling identifies several candidates, including the valosin-containing protein (VCP), involved in regulating high cellular growth rate in production CHO cell lines. Biotechnol Bioeng 106:42–56

    CAS  PubMed  Google Scholar 

  • Dorner AJ, Krane MG, Kaufman RJ (1988) Reduction of endogenous GRP78 levels improves secretion of a heterologous protein in CHO cells. Mol Cell Biol 8:4063–4070

    CAS  PubMed Central  PubMed  Google Scholar 

  • Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, Asara JM, Fitzpatrik J, Dillin A, Viollet B, Kundu M, Hansen M, Shaw RJ (2011) Phosphorylation of ULK1 (hATG1) by AMP-Activated protein kinase connects energy sensing to mitophagy. Science 331:456–461

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ellgaard L, Helenius A (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4:181–191

    CAS  PubMed  Google Scholar 

  • Figueroa B, Chen S, Oyler GA, Hardwick JM, Betenbaugh MJ (2004) Aven and Bcl-xL enhance protection against apoptosis for mammalian cells exposed to various culture conditions. Biotechnol Bioeng 85:589–600

    CAS  PubMed  Google Scholar 

  • Figueroa B, Ailor E, Osborne D, Hardwick JM, Reff M, Betenbaugh MJ (2007) Enhanced cell culture performance using inducible anti-apoptotic genes E1B-19 K and Aven in the production of a monoclonal antibody with Chinese hamster ovary cells. Biotechnol Bioeng 97:877–892

    CAS  PubMed  Google Scholar 

  • Fulda S, Debatin KM (2006) Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25:4798–4811

    CAS  PubMed  Google Scholar 

  • Fussenegger M, Hauser H (2007) Protein expression by engineering of yeast, plant and animal cells. Curr Opin Biotechnol 18:385–386

    CAS  PubMed  Google Scholar 

  • Fussenegger M, Mazur X, Bailey JE (1997) A novel cytostatic process enhances the productivity of Chinese hamster ovary cells. Biotechnol Bioeng 55:927–939

    CAS  PubMed  Google Scholar 

  • Fussenegger M, Schlatter S, Datwyler D, Mazur Z, Bailey JE (1998) Controlled proliferation by multigene metabolic engineering enhances the productivity of Chinese hamster ovary cells. Nat Biotechnol 16:468–472

    CAS  PubMed  Google Scholar 

  • Goswami J, Sinskey AJ, Steller H, Stephanopoulos GN, Wang DIC (1999) Apoptosis in batch cultures of Chinese hamster ovary cells. Biotechnol Bioeng 62:632–640

    CAS  PubMed  Google Scholar 

  • Grana X, Reddy EP (1995) Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene 11:211–219

    CAS  PubMed  Google Scholar 

  • Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271–274

    CAS  PubMed  Google Scholar 

  • Hayes NV, Smales CM, Klappa P (2010) Protein disulfide isomerase does not control recombinant IgG4 productivity in mammalian cell lines. Biotechnol Bioeng 105:770–779

    CAS  PubMed  Google Scholar 

  • Haze K, Yoshida H, Yanagi H, Yura T, Mori K (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10:3787–3799

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    CAS  PubMed  Google Scholar 

  • Hosokawa N, Wada I, Hasegawa K, Yorihuzi T, Tremblay LO, Herscovics A, Nagata K (2001) A novel ER alpha-mannosidase-like protein accelerates ER-associated degradation. EMBO Rep 2:415–422

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hwang SO, Lee GM (2008) Nutrient deprivation induces autophagy as well as apoptosis in Chinese hamster ovary cell culture. Biotechnol Bioeng 99:678–685

    CAS  PubMed  Google Scholar 

  • Hwang SO, Chung JY, Lee GM (2003) Effect of doxycycline-regulated ERp57 expression on specific thrombopoietin productivity of recombinant CHO cells. Biotechnol Prog 19:179–184

    CAS  PubMed  Google Scholar 

  • Ibarra N, Watanabe S, Bi JX, Shuttleworth J, Al-Rubeai M (2003) Modulation of cell cycle for enhancement of antibody productivity in perfusion culture of NS0 cells. Biotechnol Prog 19:224–228

    CAS  PubMed  Google Scholar 

  • Ifandi V, Al-Rubeai M (2005) Regulation of cell proliferation and apoptosis in CHO-K1 cells by the coexpression of c-Myc and Bcl-2. Biotechnol Prog 32:671–677

    Google Scholar 

  • Jahn R, Scheller RH (2006) SNAREs–engines for membrane fusion. Nat Rev Mol Cell Biol 7:631–643

    CAS  PubMed  Google Scholar 

  • Jaluria P, Betenbaugh M, Konstantopoulos K, Shiloach J (2007) Enhancement of cell proliferation in various mammalian cell lines by gene insertion of a cyclin-dependent kinase homolog. BMC Biotechnol 7:71–82

    PubMed Central  PubMed  Google Scholar 

  • Jardon MA, Sattha B, Braasch K, Leung AO, Côté HC, Butler M, Gorski SM, Piret JM (2012) Inhibition of glutamine-dependent autophagy increases t-PA production in CHO cell fed-batch processes. Biotechnol Bioeng 109:1228–1238

    CAS  PubMed  Google Scholar 

  • Jiang Z, Sharfstein ST (2008) Sodium butyrate stimulates monoclonal antibody over-expression in CHO cells by improving gene accessibility. Biotechnol Bioeng 100:189–194

    CAS  PubMed  Google Scholar 

  • Jimenez-Sanchez M, Tomson F, Zavodszky E, Rubinsztein DC (2012) Autophagy and polyglutamine diseases. Prog Neurobiol 97:67–82

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones J, Nivitchanyong T, Giblin C, Ciccarone V, Judd D, Gorfien S, Krag SS, Betenbaugh MJ (2005) Optimization of tetracycline-responsive recombinant protein production and effect on cell growth and ER stress in mammalian cells. Biotechnol Bioeng 91:722–732

    CAS  PubMed  Google Scholar 

  • Kang S, Ren D, Xiao G, Daris K, Buck L, Enyenihi AA, Zubarev R, Bondarenko PV, Deshpande R (2013) Cell line profiling to improve monoclonal antibody production. Biotechnol Bioeng 9999:1–13

    Google Scholar 

  • Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim NS, Lee GM (2000) Overexpression of bcl-2 inhibits sodium butyrate-induced apoptosis in Chinese hamster ovary cells resulting in enhanced humanized antibody production. Biotechnol Bioeng 71:184–193

    CAS  PubMed  Google Scholar 

  • Kim NS, Lee GM (2002a) Response of recombinant Chinese hamster ovary cells to hyperosmotic pressure: effect of Bcl-2 overexpression. J Biotechnol 95:237–248

    CAS  PubMed  Google Scholar 

  • Kim NS, Lee GM (2002b) Inhibition of sodium butyrate-induced apoptosis in recombinant Chinese hamster ovary cells by constitutively expressing antisense RNA of caspase-3. Biotechnol Bioeng 78:217–228

    CAS  PubMed  Google Scholar 

  • Kim SH, Lee GM (2007a) Down-regulation of lactate dehydrogenase-A by siRNAs for reduced lactic acid formation of Chinese hamster ovary cells producing thrombopoietin. Appl Microbiol Biotechnol 74:152–159

    CAS  PubMed  Google Scholar 

  • Kim SH, Lee GM (2007b) Functional expression of human pyruvate carboxylase for reduced lactic acid formation of Chinese hamster ovary cells (DG44). Appl Microbiol Biotechnol 76:659–665

    CAS  PubMed  Google Scholar 

  • Kim YG, Kim JY, Mohan C, Lee GM (2009) Effect of Bcl-xL overexpression on apoptosis and autophagy in recombinant Chinese hamster ovary cells under nutrient-deprived condition. Biotechnol Bioeng 103:757–766

    CAS  PubMed  Google Scholar 

  • Kim JY, Kim YG, Lee GM (2012) CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biotechnol 93:917–930

    CAS  PubMed  Google Scholar 

  • Kim YJ, Baek E, Lee JS, Lee GM (2013) Autophagy and its implication in Chinese hamster ovary cell culture. Biotechnol Lett 35:1753–1763

    CAS  PubMed  Google Scholar 

  • Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ku SC, Ng DT, Yap MG, Chao SH (2008) Effects of overexpression of X-box binding protein 1 on recombinant protein production in Chinese hamster ovary and NS0 myeloma cells. Biotechnol Bioeng 99:155–164

    CAS  PubMed  Google Scholar 

  • Kumar N, Gammell P, Clynes M (2007) Proliferation control strategies to improve productivity and survival during CHO based production culture: a summary of recent methods employed and the effects of proliferation control in product secreting CHO cell lines. Cytotechnology 53:33–46

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuystermans D, Al-Rubeai M (2009) cMyc increases cell number through uncoupling of cell division from cell size in CHO cells. BMC Biotechnol 9:76–88

    PubMed Central  PubMed  Google Scholar 

  • Lai D, Fu L, Weng S, Qi L, Yu C, Yu T, Wang H, Chen W (2004) Blocking caspase-3 activity with a U6 SnRNA promoter-driven ribozyme enhances survivability of CHO cells cultured in low serum medium and production of interferon-β. Biotechnol Bioeng 85:20–28

    CAS  PubMed  Google Scholar 

  • Lee MS, Lee GM (2000) Hyperosmotic pressure enhances immunoglobulin transcription rates and secretion rates of KR12H-2 transfectoma. Biotechnol Bioeng 68:260–268

    CAS  PubMed  Google Scholar 

  • Lee SK, Lee GM (2003) Development of apoptosis-resistant dihydrofolate reductase-deficient Chinese hamster ovary cell line. Biotechnol Bioeng 82:872–876

    CAS  PubMed  Google Scholar 

  • Lee JS, Lee GM (2012) Estimation of autophagy pathway genes for autophagy induction: overexpression of Atg9A does not induce autophagy in recombinant Chinese hamster ovary cells. Biochem Eng J 68:221–226

    CAS  Google Scholar 

  • Lee JS, Ha TK, Park JH, Lee GM (2013) Anti-cell death engineering of CHO cells: co-overexpression of Bcl-2 for apoptosis inhibition, Beclin-1 for autophagy induction. Biotechnol Bioeng 110:2195–2207

    CAS  PubMed  Google Scholar 

  • Levine B (2005) Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 120:159–162

    CAS  PubMed  Google Scholar 

  • Lim SF, Chuan KH, Liu S, Loh SOH, Chung BYF, Ong CC, Song Z (2006) RNAi suppression of Bax and Bak enhances viability in fed-batch cultures of CHO cells. Metab Eng 8:509–522

    CAS  PubMed  Google Scholar 

  • Lim Y, Wong NS, Lee YY, Ku SC, Wong DC, Yap MG (2010) Engineering mammalian cells in bioprocessing – current achievements and future perspectives. Biotechnol Appl Biochem 55:175–189

    CAS  PubMed  Google Scholar 

  • Lloyd DR, Holmes P, Jackson LP, Emery AN, Al-Rubeai M (2000) Relationship between cell size, cell cycle and specific recombinant protein productivity. Cytotechnology 34:59–70

    CAS  PubMed Central  PubMed  Google Scholar 

  • Majors BS, Arden N, Oyler GA, Chiang GG, Pederson NE, Betenbaugh MJ (2008) E2F-1 overexpression increases viable cell density in batch cultures of Chinese hamster ovary cells. J Biotechnol 138:103–106

    CAS  PubMed  Google Scholar 

  • Majors BS, Betenbaugh MJ, Pederson NE, Chiang GG (2009) Mcl-1 overexpression leads to higher viabilities and increased production of humanized monoclonal antibody in Chinese hamster ovary cells. Biotechnol Prog 25:1161–1168

    CAS  PubMed  Google Scholar 

  • Mazur X, Fussenegger M, Renner WA, Bailey JE (1998) Higher productivity of growth-arrested Chinese hamster ovary cells expressing the cyclin-dependent kinase inhibitor p27. Biotechnol Prog 14:705–713

    CAS  PubMed  Google Scholar 

  • McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21:1249–1259

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meents H, Enenkel B, Eppenberger HM, Werner RG, Fussenegger M (2002a) Impact of coexpression and coamplification of sICAM and antiapoptosis determinants bcl-2/bcl-xL on productivity, cell survival, and mitochondria number in CHO-DG44 grown in suspension and serum-free media. Biotechnol Bioeng 80:706–716

    CAS  PubMed  Google Scholar 

  • Meents H, Enenkel B, Werner RG, Fussenegger M (2002b) p27Kip1-mediated controlled proliferation technology increases constitutive sICAM production in CHO-DUKX adapted for growth in suspension and serum-free media. Biotechnol Bioeng 79:619–627

    CAS  PubMed  Google Scholar 

  • Mizhushima N, Klionsky DJ (2007) Protein turnover via autophagy: implication for metabolism. Annu Rev Nutr 27:19–40

    Google Scholar 

  • Mohan C, Park SH, Chung JY, Lee GM (2007) Effect of doxycycline-regulated protein disulfide isomerase expression on the specific productivity of recombinant CHO cells: thrombopoietin and antibody. Biotechnol Bioeng 98:611–615

    CAS  PubMed  Google Scholar 

  • Mohan C, Kim YG, Koo J, Lee GM (2008) Assessment of cell engineering strategies for improved therapeutic protein production in CHO cells. Biotechnol J 3:624–630

    CAS  PubMed  Google Scholar 

  • Mohan C, Kim YG, Lee GM (2009) Apoptosis and autophagy cell engineering. Cell Line Dev 6:195–216

    CAS  Google Scholar 

  • Mori K (2000) Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101:451–454

    CAS  PubMed  Google Scholar 

  • Ohya T, Hayashi T, Kiyama E, Nishii H, Miki H, Kobayashi K, Honda K, Omasa T, Ohtake H (2008) Improved production of recombinant human antithrombin III in Chinese hamster ovary cells by ATF4 overexpression. Biotechnol Bioeng 100:317–324

    CAS  PubMed  Google Scholar 

  • Omasa T, Takami T, Ohya T, Kiyama E, Hayashi T, Nishii H, Miki H, Kobayashi K, Honda K, Ohtake H (2008) Overexpression of GADD34 enhances production of recombinant human antithrombin III in Chinese hamster ovary cells. J Biosci Bioeng 106:568–573

    CAS  PubMed  Google Scholar 

  • Park HS, Kim IK, Kim IY, Kim KH, Kim HJ (2000) Expression of carbamyl phosphate synthetase I and ornithine transcarbamoylase genes in Chinese hamster ovary dhfr-cells decreases accumulation of ammonium ion in culture media. J Biotechnol 81:129–140

    CAS  PubMed  Google Scholar 

  • Peng RW, Fussenegger M (2009) Molecular engineering of exocytic vesicle traffic enhances the productivity of Chinese hamster ovary cells. Biotechnol Bioeng 102:1170–1181

    CAS  PubMed  Google Scholar 

  • Peng RW, Abellan E, Fussenegger M (2011) Differential effect of exocytic SNAREs on the production of recombinant proteins in mammalian cells. Biotechnol Bioeng 108:611–620

    CAS  PubMed  Google Scholar 

  • Rabinowitz JD, White E (2010) Autophagy and metabolism. Science 330:1344–1348

    CAS  PubMed Central  PubMed  Google Scholar 

  • Renner WA, Lee KH, Hatzimanikatis V, Bailey JE, Eppenberger HM (1995) Recombinant cyclin E expression activates proliferation and obviates surface attachment of Chinese hamster ovary (CHO) cells in protein-free medium. Biotechnol Bioeng 47:476–482

    CAS  PubMed  Google Scholar 

  • Reynolds JE, Yang T, Qian L (1994) Mcl-1, a member of the Bcl-2 family, delays apoptosis induced by c-Myc overexpression in Chinese hamster ovary cells. Cancer Res 54:6348–6352

    CAS  PubMed  Google Scholar 

  • Ron D (2002) Translational control in the endoplasmic reticulum stress response. J Clin Invest 110:1383–1388

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529

    CAS  PubMed  Google Scholar 

  • Sauerwald TM, Oyler GA, Betenbaugh MJ (2003) Study of caspase inhibitors for limiting death in mammalian cell culture. Biotechnol Bioeng 81:329–340

    CAS  PubMed  Google Scholar 

  • Schröder M (2007) The cellular response to protein unfolding stress. In: Robson GD, van West P, Gadd GM (eds) Exploitation of fungi, vol 26, British mycological society symposium series. Cambridge University Press, Leiden, pp 117–139

    Google Scholar 

  • Shvets E, Fass E, Elazar Z (2008) Utilizing flow cytometry to monitor autophagy in living mammalian cells. Autophagy 4:621–628

    CAS  PubMed  Google Scholar 

  • Singh RP, Al-Rubeai M, Gregory CD, Emery AN (1994) Cell death in bioreactors: a role for apoptosis. Biotechnol Bioeng 44:720–726

    CAS  PubMed  Google Scholar 

  • Singh RP, Emery AN, Al-Rubeai M (1996) Enhancement of survivability of mammalian cells by overexpression of the apoptosis-suppressor gene bcl-2. Biotechnol Bioeng 52:166–175

    CAS  PubMed  Google Scholar 

  • Sugimoto M, Martin N, Wilks DP, Tamai K, Huot TJ, Pantoja C, Okumura K, Serrano M, Hara E (2002) Activation of cyclin D1-kinase in murine fibroblasts lacking both p21(Cip1) and p27(Kip1). Oncogene 21:8067–8074

    CAS  PubMed  Google Scholar 

  • Sung YH, Lee JS, Park SH, Koo J, Lee GM (2007) Influence of co-down-regulation of caspase-3 and caspase-7 by siRNAs on sodium butyrate-induced apoptotic cell death of Chinese hamster ovary cells producing thrombopoietin. Metab Eng 9:452–464

    CAS  PubMed  Google Scholar 

  • Sunley K, Butler M (2010) Strategies for the enhancement of recombinant protein production from mammalian cells by growth arrest. Biotechnol Adv 28:385–394

    CAS  PubMed  Google Scholar 

  • Tey BT, Singh RP, Piredda L, Piacentini M, Al-Rubeai M (2000a) Influence of Bcl-2 on cell death during the cultivation of a Chinese hamster ovary cell line expressing a chimeric antibody. Biotechnol Bioeng 68:31–43

    CAS  PubMed  Google Scholar 

  • Tey BT, Singh RP, Piredda L, Piacentini M, Al-Rubeai M (2000b) Bcl-2 mediated suppression of apoptosis in myeloma NS0 cultures. J Biotechnol 79:147–159

    CAS  PubMed  Google Scholar 

  • Tigges M, Fussenegger M (2006) Xbp1-based engineering of secretory capacity enhances the productivity of Chinese hamster ovary cells. Metab Eng 8:264–272

    CAS  PubMed  Google Scholar 

  • Watanabe S, Shuttleworth J, Al-Rubeai M (2002) Regulation of cell cycle and productivity in NS0 cells by the over-expression of p21CIP1. Biotechnol Bioeng 77:1–7

    CAS  PubMed  Google Scholar 

  • Weber W, Fussenegger M (2007) Inducible product gene expression technology tailored to bioprocess engineering. Curr Opin Biotechnol 18:399–410

    CAS  PubMed  Google Scholar 

  • Wlaschin KF, Hu WS (2007) Engineering cell metabolism for high-density cell culture via manipulation of sugar transport. J Biotechnol 131:168–176

    CAS  PubMed  Google Scholar 

  • Wong DC, Wong KT, Nissom PM, Heng CK, Yap MG (2006) Targeting early apoptotic genes in batch and fed-batch CHO cell cultures. Biotechnol Bioeng 95:350–361

    CAS  PubMed  Google Scholar 

  • Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398

    CAS  PubMed  Google Scholar 

  • Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284:555–556

    CAS  PubMed  Google Scholar 

  • Yang M, Butler M (2000) Effects of ammonia on CHO cell growth, erythropoietin production, and glycosylation. Biotechnol Bioeng 68:370–380

    CAS  PubMed  Google Scholar 

  • Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132

    CAS  PubMed  Google Scholar 

  • Yoon SK, Song JY, Lee GM (2003) Effect of low culture temperature on specific productivity, transcription level, and heterogeneity of erythropoietin in Chinese hamster ovary cells. Biotechnol Bioeng 82:289–298

    CAS  PubMed  Google Scholar 

  • Yoon SK, Hong JK, Choo SH, Song JY, Park HW, Lee GM (2006) Adaptation of Chinese hamster ovary cells to low culture temperature: cell growth and recombinant protein production. J Biotechnol 122:463–472

    CAS  PubMed  Google Scholar 

  • Yoshida H, Matsui T, Hosokawa N, Kaufman RJ, Nagata K, Mori K (2003) A time-dependent phase shift in the mammalian unfolded protein response. Dev Cell 4:265–271

    CAS  PubMed  Google Scholar 

  • Yun CY, Liu S, Lim SF, Wang TW, Chung BYF, Teo JJ, Chuan KH, Soon ASC, Goh KS, Song Z (2007) Specific inhibition of caspase-8 and -9 in CHO cells enhances cell viability in batch and fed-batch cultures. Metab Eng 9:406–418

    CAS  PubMed  Google Scholar 

  • Zhang F, Sun X, Yi X, Zhang Y (2006) Metabolic characteristics of recombinant Chinese hamster ovary cells expressing glutamine synthetase in presence and absence of glutamine. Cytotechnology 51:21–28

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou M, Crawford Y, Ng D, Tung J, Pynn AF, Meier A, Yuk IH, Vijayasankaran N, Leach K, Joly J, Snedecor B, Shen A (2011) Decreasing lactate level and increasing antibody production in Chinese Hamster Ovary cells (CHO) by reducing the expression of lactate dehydrogenase and pyruvate dehydrogenase kinases. J Biotechnol 153:27–34

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyun Min Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baek, E., Kim, C.L., Park, J.H., Lee, G.M. (2015). Cell Engineering for Therapeutic Protein Production. In: Al-Rubeai, M. (eds) Animal Cell Culture. Cell Engineering, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-10320-4_18

Download citation

Publish with us

Policies and ethics