Skip to main content

Cell Immobilization for the Production of Viral Vaccines

  • Chapter
  • First Online:
Animal Cell Culture

Part of the book series: Cell Engineering ((CEEN,volume 9))

Abstract

Innovative vaccine production platforms are needed to efficiently generate countermeasures against (re)emerging diseases or pandemic outbreaks such as the Influenza pandemic H1N1 in 2009. Traditional viral vaccines manufacturing platforms such as embryonated eggs and conventional/classical cell substrates no longer satisfy the needs in terms of production capacity and speed to market and therefore require urgent replacement (Hess et al. 2012).

Well-established mammalian cell substrates such as MRC-5, MDCK or VERO have been used for many years for viral vaccine production. However, there is a major limitation in using these cells; they are anchorage-dependent and require a matrix to adhere and grow in stirred tank bioreactors, often used for large scale vaccine manufacturing. Moreover, the majority of the virus production processes are lytic to the host cells posing extra challenges, namely to preserve as much as possible cell viability (i.e. cell adherence) during virus replication phase; their tumorigenic and/or oncogenic nature are also of concern.

Microcarrier technology or cell aggregation strategies are the most common approaches for mass production of anchorage-dependent cells in large-scale bioreactors. Hollow fibers and cell encapsulation in biocompatible polymers are also alternatives. Efforts were made during the last two decades to adapt some of these cells to grow as single cells in suspension, but often this approach compromise cell specific productivities and product quality.

These and other issues related with viral vaccine production, e.g. the selection of the cell line, type of bioreactor and culture mode, the use of adherent or suspension cultures, and cell immobilization techniques are presented in this chapter. In addition, alternative cell substrates for vaccine production, namely insect cells, and an overview of the viral vaccine production market are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aggarwal K, Jing F et al (2011) Bioprocess optimization for cell culture based influenza vaccine production. Vaccine 29(17):3320–3328

    CAS  PubMed  Google Scholar 

  • Ala-Uotila S, Marjamaki A et al (1994) Use of a hollow fiber bioreactor for large-scale production of alpha 2-adrenoceptors in mammalian cells. J Biotechnol 37(2):179–184

    CAS  PubMed  Google Scholar 

  • Altaras NE, Aunins JG et al (2005) Production and formulation of adenovirus vectors. Adv Biochem Eng Biotechnol 99:193–260

    CAS  PubMed  Google Scholar 

  • Alves PM, Moreira JL et al (1996) Two-dimensional versus three-dimensional culture systems: effects on growth and productivity of BHK cells. Biotechnol Bioeng 52(3):429–432

    CAS  PubMed  Google Scholar 

  • Aly HH, Qi Y et al (2009) Strain-dependent viral dynamics and virus-cell interactions in a novel in vitro system supporting the life cycle of blood-borne hepatitis C virus. Hepatology 50(3):689–696

    CAS  PubMed  Google Scholar 

  • Arifin MA, Mel M et al (2010) Production of Newcastle disease virus by Vero cells grown on cytodex 1 microcarriers in a 2-litre stirred tank bioreactor. J Biomed Biotechnol 2010:586363

    PubMed Central  PubMed  Google Scholar 

  • Armeanu S, Haessler I et al (2001) In vivo perivascular implantation of encapsulated packaging cells for prolonged retroviral gene transfer. J Microencapsul 18(4):491–506

    CAS  PubMed  Google Scholar 

  • Barrett PN, Mundt W et al (2009) Vero cell platform in vaccine production: moving towards cell culture-based viral vaccines. Expert Rev Vaccines 8(5):607–618

    CAS  PubMed  Google Scholar 

  • Beale AJ (1981) Cell substrate for killed poliovaccine production. Dev Biol Stand 47:19–23

    CAS  PubMed  Google Scholar 

  • Berry JM, Barnabe N et al (1999) Production of reovirus type-1 and type-3 from Vero cells grown on solid and macroporous microcarriers. Biotechnol Bioeng 62(1):12–19

    CAS  PubMed  Google Scholar 

  • Bleckwenn NA, Bentley WE et al (2005) Evaluation of production parameters with the vaccinia virus expression system using microcarrier attached HeLa cells. Biotechnol Prog 21(2):554–561

    CAS  PubMed  Google Scholar 

  • Bock A, Schulze-Horsel J et al (2011) High-density microcarrier cell cultures for influenza virus production. Biotechnol Prog 27(1):241–250

    CAS  PubMed  Google Scholar 

  • Brito C, Simão D et al (2012) 3D cultures of human neural progenitor cells: dopaminergic differentiation and genetic modification. Methods 56(3):452–460

    CAS  PubMed  Google Scholar 

  • Brown SW, Mehtali M (2010) The avian EB66(R) cell line, application to vaccines, and therapeutic protein production. PDA J Pharm Sci Technol 64(5):419–425

    CAS  PubMed  Google Scholar 

  • Capstick PB, Telling RC et al (1962) Growth of a cloned strain of hamster kidney cells in suspended cultures and their susceptibility to the virus of foot-and-mouth disease. Nature 195:1163–1164

    CAS  PubMed  Google Scholar 

  • Carrel A (1923) A method for the physiological study of tissues in vitro. J Exp Med 38(4):407–418

    CAS  PubMed Central  PubMed  Google Scholar 

  • Castilho LR, Medronho RA (2002) Cell retention devices for suspended-cell perfusion cultures. Adv Biochem Eng Biotechnol 74:129–169

    CAS  PubMed  Google Scholar 

  • Chen A, Poh SL et al (2011) Serum-free microcarrier based production of replication deficient influenza vaccine candidate virus lacking NS1 using Vero cells. BMC Biotechnol 11:81

    CAS  PubMed Central  PubMed  Google Scholar 

  • Conceicao MM, Tonso A et al (2007) Viral antigen production in cell cultures on microcarriers Bovine parainfluenza 3 virus and MDBK cells. Vaccine 25(45):7785–7795

    CAS  PubMed  Google Scholar 

  • Croughan MS, Hu WS (2006) From microcarriers to hydrodynamics: introducing engineering science into animal cell culture. Biotechnol Bioeng 95(2):220–225

    CAS  PubMed  Google Scholar 

  • Croughan MS, Hamel JF, Wang DI (2006) Hydrodynamic effects on animal cells grown in microcarrier cultures 1987. Biotechnol Bioeng 95(2):295–305

    CAS  PubMed  Google Scholar 

  • De Bartolo L, Salerno S et al (2009) Human hepatocyte functions in a crossed hollow fiber membrane bioreactor. Biomaterials 30(13):2531–2543

    PubMed  Google Scholar 

  • Dowd JE, Weber I et al (1999) Predictive control of hollow-fiber bioreactors for the production of monoclonal antibodies. Biotechnol Bioeng 63(4):484–492

    CAS  PubMed  Google Scholar 

  • Ehrlich HJ, Berezuk G et al (2012) Clinical development of a Vero cell culture-derived seasonal influenza vaccine. Vaccine 30(29):4377–4386

    CAS  PubMed  Google Scholar 

  • Enders JF, Weller TH et al (1949) Cultivation of the Lansing strain of poliomyelitis virus in cultures of various human embryonic tissues. Science 109(2822):85–87

    CAS  PubMed  Google Scholar 

  • Evans TL, Miller RA (1988) Large-scale production of murine monoclonal antibodies using hollow fiber bioreactors. Biotechniques 6(8):762–767

    CAS  PubMed  Google Scholar 

  • Fallaux FJ, Bout A et al (1998) New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses. Hum Gene Ther 9(13):1909–1917

    CAS  PubMed  Google Scholar 

  • Fernandes F, Vidigal J et al (2012) Flipase-mediated cassette exchange in Sf9 insect cells for stable gene expression. Biotech Bioeng 109:2836–2844

    CAS  Google Scholar 

  • Fernandes P, Peixoto C et al (2013) Bioprocess development for canine adenovirus type 2 vectors. Gene Ther 20(4):353–360

    CAS  PubMed  Google Scholar 

  • Fernandes F, Dias MM et al (2014) Production of rotavirus core-like particles in Sf9 cells using recombinase-mediated cassette exchange. J Biotechnol 171:34–38

    CAS  PubMed  Google Scholar 

  • Fiorentine D, Shahar A et al (1985) Production of herpesvirus of turkeys in microcarrier culturing system–a new method for production of vaccine against Marek’s disease. Dev Biol Stand 60:421–430

    CAS  PubMed  Google Scholar 

  • Frazatti-Gallina NM, Mourao-Fuches RM et al (2004) Vero-cell rabies vaccine produced using serum-free medium. Vaccine 23(4):511–517

    CAS  PubMed  Google Scholar 

  • Gardner TA, Ko SC et al (2001) Serum-free recombinant production of adenovirus using a hollow fiber capillary system. Biotechniques 30(2):422–427

    CAS  PubMed  Google Scholar 

  • Genzel Y, Fischer M et al (2006a) Serum-free influenza virus production avoiding washing steps and medium exchange in large-scale microcarrier culture. Vaccine 24(16):3261–3272

    CAS  PubMed  Google Scholar 

  • Genzel Y, Olmer RM et al (2006b) Wave microcarrier cultivation of MDCK cells for influenza virus production in serum containing and serum-free media. Vaccine 24(35–36):6074–6087

    CAS  PubMed  Google Scholar 

  • Giard DJ, Fleischaker RJ (1980) Examination of parameters affecting human interferon production with microcarrier-grown fibroblast cells. Antimicrob Agents Chemother 18(1):130–136

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giard DJ, Loeb DH et al (1979) Human interferon production with diploid fibroblast cells grown on microcarriers. Biotechnol Bioeng 21(3):433–442

    CAS  PubMed  Google Scholar 

  • Goguen B, Kedersha N (1993) Clonogenic cytotoxicity testing by microdrop encapsulation. Nature 363(6425):189–190

    CAS  PubMed  Google Scholar 

  • Graham FL, Smiley J et al (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36(1):59–74

    CAS  PubMed  Google Scholar 

  • Grinnell F, Feld MK (1979) Initial adhesion of human fibroblasts in serum-free medium: possible role of secreted fibronectin. Cell 17(1):117–129

    CAS  PubMed  Google Scholar 

  • Grinnell F, Hays DG et al (1977) Cell adhesion and spreading factor. Partial purification and properties. Exp Cell Res 110(1):175–190

    CAS  PubMed  Google Scholar 

  • Halperin SA, Smith B et al (2002) Safety and immunogenicity of a trivalent, inactivated, mammalian cell culture-derived influenza vaccine in healthy adults, seniors, and children. Vaccine 20(7–8):1240–1247

    CAS  PubMed  Google Scholar 

  • Hammond TG, Hammond JM (2001) Optimized suspension culture: the rotating-wall vessel. Am J Physiol Renal Physiol 281(1):F12–F25

    CAS  PubMed  Google Scholar 

  • Handa-Corrigan A, Nikolay S et al (1992) Controlling and predicting monoclonal antibody production in hollow-fiber bioreactors. Enzyme Microb Technol 14(1):58–63

    CAS  PubMed  Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    CAS  PubMed  Google Scholar 

  • Hayle AJ (1986) Culture of respiratory syncytial virus infected diploid bovine nasal mucosa cells on cytodex 3 microcarriers. Arch Virol 89(1–4):81–88

    CAS  PubMed  Google Scholar 

  • He C, Yang Z et al (2011) Downstream processing of Vero cell-derived human influenza A virus (H1N1) grown in serum-free medium. J Chromatogr A 1218(31):5279–5285

    CAS  PubMed  Google Scholar 

  • Hegde R, Gomes AR et al (2008) Standardization of large scale production of homologous live attenuated PPR vaccine in India. Trop Anim Health Prod 40(1):11–16

    PubMed  Google Scholar 

  • Heifetz AH, Braatz JA et al (1989) Monoclonal antibody production in hollow fiber bioreactors using serum-free medium. Biotechniques 7(2):192–199

    CAS  PubMed  Google Scholar 

  • Hess RD, Weber F et al (2012) Regulatory, biosafety and safety challenges for novel cells as substrates for human vaccines. Vaccine 30(17):2715–2727

    CAS  PubMed  Google Scholar 

  • Hessing M, van Schijndel HB et al (1992) Purification and quantification of recombinant Epstein-Barr viral glycoproteins gp350/220 from Chinese hamster ovary cells. J Chromatogr 599(1–2):267–272

    CAS  PubMed  Google Scholar 

  • Hirschel M, Gangemi J et al (2011) Novel uses for hollow fiber bioreactors. Genet Eng Biotechnol News 31(12):42–44

    Google Scholar 

  • Hosai H, Yamanishi K et al (1970) Studies on live attenuated mumps virus vaccine. 1. Attenuation of mumps virus by serial passage in the chorioallantoic cavity of developing chick embryos and field trials by the inhalation method. Biken J 13(2):121–126

    CAS  PubMed  Google Scholar 

  • Howard MK, Kistner O et al (2008) Pre-clinical development of cell culture (Vero)-derived H5N1 pandemic vaccines. Biol Chem 389(5):569–577

    CAS  PubMed  Google Scholar 

  • Hughes RC, Pena SDJ et al (1979) Molecular requirements for the adhesion and spreading of hamster fibroblasts. Exp Cell Res 121(2):307–314

    CAS  PubMed  Google Scholar 

  • Hundt B, Best C, Schlawin N, Kaßner H, Genzel Y, Reichl U (2007) Establishment of a mink enteritis vaccine production process in stirred-tank reactor and Wave® Bioreactor microcarrier culture in 1–10 L scale. Vaccine 25(20):3987–3995

    CAS  PubMed  Google Scholar 

  • Inoue Y, Arita N et al (1999) Efficient production of recombinant human erythropoietin by replenishment of microcarriers in the hollow fiber culture cassette. Biosci Biotechnol Biochem 63(9):1624–1626

    CAS  PubMed  Google Scholar 

  • Iyer P, Ostrove JM et al (1999) Comparison of manufacturing techniques for adenovirus production. Cytotechnology 30(1–3):169–172

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jackson LR, Trudel LJ et al (1996) Evaluation of hollow fiber bioreactors as an alternative to murine ascites production for small scale monoclonal antibody production. J Immunol Methods 189(2):217–231

    CAS  PubMed  Google Scholar 

  • Jagannathan S, Chaansha S et al (2009) Standardization and assessment of cell culture media quantities in roller poly ethylene terephthalate bottles employed in the industrial rabies viral vaccine production. Pak J Biol Sci 12(18):1246–1252

    CAS  PubMed  Google Scholar 

  • Jardin BA, Zhao Y et al (2008) Expression of SEAP (secreted alkaline phosphatase) by baculovirus mediated transduction of HEK 293 cells in a hollow fiber bioreactor system. J Biotechnol 135(3):272–280

    CAS  PubMed  Google Scholar 

  • Jarvis AP Jr, Grdina TA et al (1986) Cell growth and hemoglobin synthesis in murine erythroleukemic cells propagated in high density microcapsule culture. Vitro Cell Dev B 22(10):589–596

    CAS  Google Scholar 

  • Jasmund I, Langsch A et al (2002) Cultivation of primary porcine hepatocytes in an OXY-HFB for use as a bioartificial liver device. Biotechnol Prog 18(4):839–846

    CAS  PubMed  Google Scholar 

  • Junker BH, Wu F et al (1992) Evaluation of a microcarrier process for large-scale cultivation of attenuated hepatitis A. Cytotechnology 9(1–3):173–187

    CAS  PubMed  Google Scholar 

  • Kallel H, Rourou S et al (2003) A novel process for the production of a veterinary rabies vaccine in BHK-21 cells grown on microcarriers in a 20-l bioreactor. Appl Microbiol Biotechnol 61(5–6):441–446

    CAS  PubMed  Google Scholar 

  • Kawana R, Kaneko M et al (1970) Increasing attenuation of measles virus strain Sugiyama during serial passage in calf kidney cells. Jpn J Exp Med 40(4):257–263

    CAS  PubMed  Google Scholar 

  • Kessler N, Thomas G et al (1997) Hybridoma growth in a new generation hollow fibre bioreactor: antibody productivity and consistency. Cytotechnology 24(2):109–119

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khetan S, Burdick J (2009) Cellular encapsulation in 3D hydrogels for tissue engineering. J Vis Exp (32):e1590. doi:10.3791/1590

  • Kizilel S, Garfinkel M et al (2005) The bioartificial pancreas: progress and challenges. Diabetes Technol Ther 7(6):968–985

    CAS  PubMed  Google Scholar 

  • Knazek RA, Gullino PM et al (1972) Cell culture on artificial capillaries: an approach to tissue growth in vitro. Science 178(4056):65–66

    CAS  PubMed  Google Scholar 

  • Langer ES (2011/2012) Perfusion bioreactors are making a comeback, but industry misperceptions persist. Bioprocess J 9:49–52

    Google Scholar 

  • Lee JI, Kim HW et al (2012) Microencapsulation of pancreatic islets with canine ear cartilage for immunoisolation. Transplant Proc 44(4):1091–1094

    CAS  PubMed  Google Scholar 

  • Leong M, Babbitt W et al (2007) A hollow-fiber bioreactor for expanding HIV-1 in human lymphocytes used in preparing an inactivated vaccine candidate. Biologicals 35(4):227–233

    CAS  PubMed  Google Scholar 

  • Lesko J, Veber P et al (1993) Large-scale production of infectious bovine rhinotracheitis virus in cell culture on microcarriers. Acta Virol 37(1):73–78

    CAS  PubMed  Google Scholar 

  • Liu CC, Lee SC et al (2008) High genetic stability of dengue virus propagated in MRC-5 cells as compared to the virus propagated in vero cells. PLoS One 3(3):e1810

    PubMed Central  PubMed  Google Scholar 

  • Liu H, Liu XM et al (2009) A high-yield and scaleable adenovirus vector production process based on high density perfusion culture of HEK 293 cells as suspended aggregates. J Biosci Bioeng 107(5):524–529

    CAS  PubMed  Google Scholar 

  • Lohr V, Rath A et al (2009) New avian suspension cell lines provide production of influenza virus and MVA in serum-free media: studies on growth, metabolism and virus propagation. Vaccine 27(36):4975–4982

    CAS  PubMed  Google Scholar 

  • Lohr V, Genzel Y et al (2010) A new MDCK suspension line cultivated in a fully defined medium in stirred-tank and wave bioreactor. Vaccine 28(38):6256–6264

    CAS  PubMed  Google Scholar 

  • Lowrey D, Murphy S et al (1994) A comparison of monoclonal antibody productivity in different hollow fiber bioreactors. J Biotechnol 36(1):35–38

    CAS  PubMed  Google Scholar 

  • Malpique R, Osorio LM et al (2010) Alginate encapsulation as a novel strategy for the cryopreservation of neurospheres. Tissue Eng Part C Methods 16(5):965–977

    CAS  PubMed  Google Scholar 

  • Mariner JC, House JA et al (2012) Rinderpest eradication: appropriate technology and social innovations. Science 337(6100):1309–1312

    CAS  PubMed  Google Scholar 

  • Martinet O, Schreyer N et al (2003) Encapsulation of packaging cell line results in successful retroviral-mediated transfer of a suicide gene in vivo in an experimental model of glioblastoma. Eur J Surg Oncol 29(4):351–357

    CAS  PubMed  Google Scholar 

  • Marx U, Matthes H et al (1993) Application of a hollow fiber membrane cell culture system in medicine. Am Biotechnol Lab 11(12):26

    CAS  PubMed  Google Scholar 

  • Mazzitelli S, Borgatti M et al (2011) Encapsulation of eukaryotic cells in alginate microparticles: cell signaling by TNF-alpha through capsular structure of cystic fibrosis cells. J Cell Commun Signal 5(2):157–165

    PubMed Central  PubMed  Google Scholar 

  • McSharry JJ, Deziel MR et al (2009) Pharmacodynamics of cidofovir for vaccinia virus infection in an in vitro hollow-fiber infection model system. Antimicrob Agents Chemother 53(1):129–135

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meng Q, Zhang G et al (2004) Hepatocyte culture in bioartificial livers with different membrane characteristics. Biotechnol Lett 26(18):1407–1412

    CAS  PubMed  Google Scholar 

  • Mered B, Albrecht P et al (1981) Propagation of poliovirus in microcarrier cultures of three monkey kidney cell lines. J Biol Stand 9(2):137–145

    CAS  PubMed  Google Scholar 

  • Montagnon BJ (1985) Inactivated polio vaccine: industrial production from micro-carrier Vero cells culture. Trop Geogr Med 37(3):S40–S41

    CAS  PubMed  Google Scholar 

  • Moreira JL, Santana PC et al (1995a) Formation and disruption mechanisms of animal cell aggregates. In: Beuvery EC, Griffiths JB, Zeijlemaker WP (eds) Animal cell technology: developments towards the 21st century. Springer Netherlands, Dordrecht, pp 793–797

    Google Scholar 

  • Moreira JL, Alves PM et al (1995b) Hydrodynamic effects on BHK cells grown as suspended natural aggregates. Biotechnol Bioeng 46(4):351–360

    CAS  PubMed  Google Scholar 

  • Neumann AJ, Schroeder J et al (2013) Enhanced adenovirus transduction of hMSCs using 3D hydrogel cell carriers. Mol Biotechnol 53(2):207–216

    CAS  PubMed  Google Scholar 

  • Nilsang S, Nehru V et al (2008) Three-dimensional culture for monoclonal antibody production by hybridoma cells immobilized in macroporous gel particles. Biotechnol Prog 24(5):1122–1131

    CAS  PubMed  Google Scholar 

  • Nilsson K, Scheirer W et al (1983) Entrapment of animal cells for production of monoclonal antibodies and other biomolecules. Nature 302(5909):629–630

    CAS  PubMed  Google Scholar 

  • Okada T, Nomoto T et al (2005) Large-scale production of recombinant viruses by use of a large culture vessel with active gassing. Hum Gene Ther 16(10):1212–1218

    CAS  PubMed  Google Scholar 

  • Palakkan AA, Raj DK et al (2013) Evaluation of polypropylene hollow-fiber prototype bioreactor for bioartificial liver. Tissue Eng Part A 19(9–10):1056–1066

    CAS  PubMed  Google Scholar 

  • Pan D, Whitley CB (1999) Closed hollow-fiber bioreactor: a new approach to retroviral vector production. J Gene Med 1(6):433–440

    CAS  PubMed  Google Scholar 

  • Peetermans J, Huygelen C (1967) Attenuation ob rubella virus by serial passage in primary rabbit kidney cell cultures. I. Growth characteristics in vitro and production of experimental vaccines at different passage levels. Arch Gesamte Virusforsch 21(2):133–143

    CAS  PubMed  Google Scholar 

  • Pohlscheidt M, Langer U et al (2008) Development and optimisation of a procedure for the production of Parapoxvirus ovis by large-scale microcarrier cell culture in a non-animal, non-human and non-plant-derived medium. Vaccine 26(12):1552–1565

    CAS  PubMed  Google Scholar 

  • Pueyo ME, Darquy S et al (1995) A method for obtaining monodispersed cells from isolated porcine islets of Langerhans. Int J Artif Organs 18(1):34–38

    CAS  PubMed  Google Scholar 

  • Rivera E, Sjosten CG et al (1986) Porcine parvovirus: propagation in microcarrier cell culture and immunogenic evaluation in pregnant gilts. Res Vet Sci 41(3):391–396

    CAS  PubMed  Google Scholar 

  • Roldão A, Silva AC et al (2011) Viruses and virus-like particles in biotechnology fundamentals and applications. In: Moo-Young M (ed) Comprehensive biotechnology, vol 1. Elsevier, Amsterdam, pp 625–649

    Google Scholar 

  • Saarinen MA, Murhammer DW (2000) Culture in the rotating-wall vessel affects recombinant protein production capability of two insect cell lines in different manners. Vitro Cell Dev Biol Anim 36(6):362–366

    CAS  Google Scholar 

  • Saller RM, Indraccolo S et al (2002) Encapsulated cells producing retroviral vectors for in vivo gene transfer. J Gene Med 4(2):150–160

    PubMed  Google Scholar 

  • Scheirer W (1998) High-density growth of animal cells within cell retention fermenters equipped with membranes. Ani Cell Biotechnol 3:263–281

    Google Scholar 

  • Scheirer W, Nilsson K et al (1983) Entrapment of animal cells for the production of biomolecules such as monoclonal antibodies. Dev Biol Stand 55:155–161

    CAS  PubMed  Google Scholar 

  • Schiedner G, Hertel S et al (2000) Efficient transformation of primary human amniocytes by E1 functions of Ad5: generation of new cell lines for adenoviral vector production. Hum Gene Ther 11(15):2105–2116

    CAS  PubMed  Google Scholar 

  • Schiedner G, Hertel S et al (2008) Efficient and reproducible generation of high-expressing, stable human cell lines without need for antibiotic selection. BMC Biotechnol 8:13

    PubMed Central  PubMed  Google Scholar 

  • Serra M, Correia C et al (2011) Microencapsulation technology: a powerful tool for integrating expansion and cryopreservation of human embryonic stem cells. PLoS One 6(8):e23212

    CAS  PubMed Central  PubMed  Google Scholar 

  • Serra M, Brito C et al (2012) Process engineering of human pluripotent stem cells for clinical application. Trends Biotechnol 30(6):350–359

    CAS  PubMed  Google Scholar 

  • Shimoizu H, Naka Y et al (1993) Factors affecting the yield of a baculovirus insect cell system by hollow-fiber culture. In: Kaminogawa S, Ametani A, Hachimura S (eds) Animal cell technology: basic & applied aspects, vol 5. Springer, Dordrecht, pp 355–360

    Google Scholar 

  • Shipley RJ, Davidson AJ et al (2011) A strategy to determine operating parameters in tissue engineering hollow fiber bioreactors. Biotechnol Bioeng 108(6):1450–1461

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shirokaze J, Yanagida K et al (1995) IL-4 production using macroporous microcarrier. In: Beuvery EC, Griffiths JB, Zeijlemaker WP (eds) Animal cell technology: developments towards the 21st century. Springer, Dordrecht, pp 877–881

    Google Scholar 

  • Silva AC, Delgado I et al (2008) Scalable culture systems using different cell lines for the production of Peste des Petits ruminants vaccine. Vaccine 26(26):3305–3311

    CAS  PubMed  Google Scholar 

  • Simao D, Costa I et al (2011) Towards human central nervous system in vitro models for preclinical research: strategies for 3D neural cell culture. BMC Proc 5(8):P53

    PubMed Central  Google Scholar 

  • Singh V (1999) Disposable bioreactor for cell culture using wave-induced agitation. Cytotechnology 30(1–3):149–158

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sinskey AJ, Fleischaker RJ et al (1981) Production of cell-derived products: virus and interferon. Ann N Y Acad Sci 369:47–59

    CAS  PubMed  Google Scholar 

  • Souza MC, Freire MS et al (2009) Production of yellow fever virus in microcarrier-based Vero cell cultures. Vaccine 27(46):6420–6423

    CAS  PubMed  Google Scholar 

  • Spier RE, Whiteside JP (1976) The production of foot-and-mouth disease virus from BHK 21 C 13 cells grown on the surface of DEAE sephadex A50 beads. Biotechnol Bioeng 18(5):659–667

    CAS  PubMed  Google Scholar 

  • Stange J, Mitzner S (1996) Hepatocyte encapsulation–initial intentions and new aspects for its use in bioartificial liver support. Int J Artif Organs 19(1):45–48

    CAS  PubMed  Google Scholar 

  • Stones PB (1976) Production and control of live oral poliovirus vaccine in WI-38 human diploid cells. Dev Biol Stand 37:251–253

    CAS  PubMed  Google Scholar 

  • Sun MB, Jiang YJ et al (2004) A novel process for production of hepatitis A virus in Vero cells grown on microcarriers in bioreactor. World J Gastroenterol 10(17):2571–2573

    CAS  PubMed  Google Scholar 

  • Tampion J, Tampion MD (1988) Immobilized cells – principles and applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Tapia F, Vogel T et al (2014) Production of high-titer human influenza A virus with adherent and suspension MDCK cells cultured in a single-use hollow fiber bioreactor. Vaccine 32(8):1003–1011

    CAS  PubMed  Google Scholar 

  • Teramura Y, Iwata H (2009) Islet encapsulation with living cells for improvement of biocompatibility. Biomaterials 30(12):2270–2275

    CAS  PubMed  Google Scholar 

  • Tokashiki M, Takamatsu H (1993) Perfusion culture apparatus for suspended mammalian cells. Cytotechnology 13(3):149–159

    CAS  PubMed  Google Scholar 

  • Toriniwa H, Komiya T (2007) Japanese encephalitis virus production in Vero cells with serum-free medium using a novel oscillating bioreactor. Biologicals 35(4):221–226

    CAS  PubMed  Google Scholar 

  • Tostoes RM, Leite SB et al (2011) Perfusion of 3D encapsulated hepatocytes–a synergistic effect enhancing long-term functionality in bioreactors. Biotechnol Bioeng 108(1):41–49

    CAS  PubMed  Google Scholar 

  • Tostoes RM, Leite SB et al (2012) Human liver cell spheroids in extended perfusion bioreactor culture for repeated-dose drug testing. Hepatology 55(4):1227–1236

    CAS  PubMed  Google Scholar 

  • Trabelsi K, Rourou S et al (2005) Comparison of various culture modes for the production of rabies virus by Vero cells grown on microcarriers in a 2-l bioreactor. Enzyme Microb Technol 36(4):514–519

    CAS  Google Scholar 

  • Trabelsi K, Majoul S et al (2012) Development of a measles vaccine production process in MRC-5 cells grown on Cytodex1 microcarriers and in a stirred bioreactor. Appl Microbiol Biotechnol 93(3):1031–1040

    CAS  PubMed  Google Scholar 

  • Trimble GX (1957) Attenuation of chickenpox with gamma globulin. Can Med Assoc J 77(7):697–699

    CAS  PubMed Central  PubMed  Google Scholar 

  • van Steenis G, van Wezel AL et al (1980) Use of captive-bred monkeys for vaccine production. Dev Biol Stand 45:99–105

    PubMed  Google Scholar 

  • van Wezel AL (1967) Growth of cell-strains and primary cells on micro-carriers in homogeneous culture. Nature 216:64–65

    CAS  PubMed  Google Scholar 

  • van Wezel AL (1971) New trends in the preparation of cell substrates for the production of virus vaccines. Prog Immunobiol Stand 5:187–192

    PubMed  Google Scholar 

  • van Wezel AL, van Steenis G et al (1978) New approach to the production of concentrated and purified inactivated polio and rabies tissue culture vaccines. Dev Biol Stand 41:159–168

    PubMed  Google Scholar 

  • Vidigal J, Dias MM et al (2013) A cell sorting protocol for selecting high-producing sub-populations of Sf9 and High Five cells. J Biotechnol 168(4):436–439

    CAS  PubMed  Google Scholar 

  • Voisard D, Meuwly F et al (2003) Potential of cell retention techniques for large-scale high-density perfusion culture of suspended mammalian cells. Biotechnol Bioeng 82(7):751–765

    CAS  PubMed  Google Scholar 

  • Wang Y, Ouyang F (1999) Bead-to-bead transfer of Vero cells in microcarrier culture. Cytotechnology 31(3):221–224

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang D, Xiao C et al (1996) Studies on high-density cultivation of Vero cells with biosilon solid microcarrier. Chin J Biotechnol 12(2):119–129

    CAS  PubMed  Google Scholar 

  • Whitford WG, Cadwell JJS (2009) Interest in hollow-fiber perfusion bioreactors is growing. BioProcess Int 7(9):54–64

    CAS  Google Scholar 

  • WHO (2014). Global vaccine market – World Health Organization. www.who.int

  • Wiktor TJ, Fernandes MV et al (1964) Cultivation of rabies virus in human diploid cell strain Wi-38. J Immunol 93:353–366

    CAS  PubMed  Google Scholar 

  • Wu SC, Huang GY et al (2002) Production of retrovirus and adenovirus vectors for gene therapy: a comparative study using microcarrier and stationary cell culture. Biotechnol Prog 18(3):617–622

    CAS  PubMed  Google Scholar 

  • Wu SC, Liu CC et al (2004) Optimization of microcarrier cell culture process for the inactivated enterovirus type 71 vaccine development. Vaccine 22(29–30):3858–3864

    CAS  PubMed  Google Scholar 

  • Yang H, Zheng Y et al (2013) Encapsulation of liver microsomes into a thermosensitive hydrogel for characterization of drug metabolism and toxicity. Biomaterials 34(38):9770–9778

    CAS  PubMed  Google Scholar 

  • Yazaki PJ, Shively L et al (2001) Mammalian expression and hollow fiber bioreactor production of recombinant anti-CEA diabody and minibody for clinical applications. J Immunol Methods 253(1–2):195–208

    CAS  PubMed  Google Scholar 

  • Yokomizo AY, Antoniazzi MM et al (2004) Rabies virus production in high vero cell density cultures on macroporous microcarriers. Biotechnol Bioeng 85(5):506–515

    CAS  PubMed  Google Scholar 

  • Yuan Ye K, Sullivan KE et al (2011) Encapsulation of cardiomyocytes in a fibrin hydrogel for cardiac tissue engineering. J Vis Exp (55):e3251, doi:10.3791/3251

  • Zhang B, Yi S et al (2011) Immunogenicity of a scalable inactivated rotavirus vaccine in mice. Hum Vaccin 7(2):248–257

    CAS  PubMed  Google Scholar 

  • Zimmermann H, Shirley SG et al (2007) Alginate-based encapsulation of cells: past, present, and future. Curr Diab Rep 7(4):314–320

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support received from Fundação para a Ciência e Tecnologia (FCT), Portugal (project PTDC/EBB-BIO/119501/2010) and the European Project EDUFLUVAC (FP7-HEALTH-2013-INNOVATION-1). Ana Carina Silva and Paulo Fernandes acknowledge FCT for their Ph.D. grants (SFRH/BD/45786/2008 and SFRH/BD/70810/2010, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula M. Alves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Silva, A.C., Roldão, A., Teixeira, A., Fernandes, P., Sousa, M.F.Q., Alves, P.M. (2015). Cell Immobilization for the Production of Viral Vaccines. In: Al-Rubeai, M. (eds) Animal Cell Culture. Cell Engineering, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-10320-4_17

Download citation

Publish with us

Policies and ethics