Skip to main content

Metabolic Flux Analysis: A Powerful Tool in Animal Cell Culture

  • Chapter
  • First Online:
Animal Cell Culture

Part of the book series: Cell Engineering ((CEEN,volume 9))

Abstract

Metabolic flux analysis (MFA) is being increasingly applied to animal cells as a tool for better understanding their metabolism in culture. The generated knowledge can be used to improve the productivity of biopharmaceutical processes, by optimizing feeding regimes, media formulation or engineering cell targets. Furthermore, biomedical research has also benefited from flux analysis studies by phenotyping diseased cells leading to the identification of therapeutic targets. Moreover, as drug-induced changes on cell metabolism can be readily inspected by MFA, this tool can help saving money and time in drug development. Nevertheless, comprehensive reviews with instructive guidance on the application of MFA to animal cell cultures can be scarcely found in the literature. Herein, different techniques and experimental settings for MFA studies will be addressed, including recent advances and overall trends, supplemented with relevant examples in several animal cell systems. A general picture on the subject will be depicted aiming at the design and development of new techniques for tackling prevailing challenges that need to be overcome in biopharmaceuticals production, biomedical research and toxicology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn WS, Antoniewicz MR (2011) Metabolic flux analysis of CHO cells at growth and non-growth phases using isotopic tracers and mass spectrometry. Metabol Eng 13(5):598–609

    CAS  Google Scholar 

  • Ahn WS, Antoniewicz MR (2012) Towards dynamic metabolic flux analysis in CHO cell cultures. Biotechnol J 7(1):61–74

    CAS  PubMed  Google Scholar 

  • Ahn WS, Antoniewicz MR (2013) Parallel labeling experiments with [1,2-(13)C]glucose and [U-(13)C]glutamine provide new insights into CHO cell metabolism. Metabol Eng 15:34–47

    CAS  Google Scholar 

  • Ahn WS et al (2008) Effect of culture temperature on erythropoietin production and glycosylation in a perfusion culture of recombinant CHO cells. Biotechnol Bioeng 101(6):1234–1244

    CAS  PubMed  Google Scholar 

  • Altamirano C et al (2001) Analysis of CHO cells metabolic redistribution in a glutamate-based defined medium in continuous culture. Biotechnol Prog 17(6):1032–1041

    CAS  PubMed  Google Scholar 

  • Altamirano C et al (2004) Strategies for fed-batch cultivation of t-PA producing CHO cells: substitution of glucose and glutamine and rational design of culture medium. J Biotechnol 110(2):171–179

    CAS  PubMed  Google Scholar 

  • Altamirano C et al (2006) Considerations on the lactate consumption by CHO cells in the presence of galactose. J Biotechnol 125(4):547–556

    CAS  PubMed  Google Scholar 

  • Amaral AI et al (2010) Metabolic alterations induced by ischemia in primary cultures of astrocytes: merging 13C NMR spectroscopy and metabolic flux analysis. J Neurochem 113(3):735–748

    CAS  PubMed  Google Scholar 

  • Amaral AI, Teixeira AP, Håkonsen BI et al (2011a) A comprehensive metabolic profile of cultured astrocytes using isotopic transient metabolic flux analysis and C-labeled glucose. Front Neuroenergetics 3:1–5

    Google Scholar 

  • Amaral AI, Teixeira AP, Sonnewald U et al (2011b) Estimation of intracellular fluxes in cerebellar neurons after hypoglycemia: importance of the pyruvate recycling pathway and glutamine oxidation. J Neurosci Res 89(5):700–710

    CAS  PubMed  Google Scholar 

  • Antoniewicz MR (2013) (13)C metabolic flux analysis: optimal design of isotopic labeling experiments. Curr Opin Biotechnol 24:1–6

    Google Scholar 

  • Antoniewicz MR, Kelleher JK, Stephanopoulos G (2006) Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. Metabol Eng 8(4):324–337

    CAS  Google Scholar 

  • Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007a) Accurate assessment of amino acid mass isotopomer distributions for metabolic flux analysis. Anal Chem 79(19):7554–7559

    CAS  PubMed  Google Scholar 

  • Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007b) Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metabol Eng 9(1):68–86

    CAS  Google Scholar 

  • Antoniewicz MR, Kelleher JK, Stephanopoulos G (2011) Measuring deuterium enrichment of glucose hydrogen atoms by gas chromatography mass spectrometry. Anal Chem 83(8):3211–3216

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boghigian BA et al (2010) Metabolic flux analysis and pharmaceutical production. Metabol Eng 12(2):81–95

    CAS  Google Scholar 

  • Bonarius HPJ, Schmid G (1997) Flux analysis of underdetermined metabolic networks: the quest for the missing constraints. Trends Biotechnol 15:308–314

    CAS  Google Scholar 

  • Bonarius HPJ et al (2000) Metabolic-flux analysis of hybridoma cells under oxidative and reductive stress using mass balances. Cytotechnology 32:97–107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carinhas N et al (2011) Hybrid metabolic flux analysis: combining stoichiometric and statistical constraints to model the formation of complex recombinant products. BMC Syst Biol 5:34

    PubMed Central  PubMed  Google Scholar 

  • Carinhas N et al (2012) Systems biotechnology of animal cells: the road to prediction. Trends Biotechnol 30(7):377–385

    CAS  PubMed  Google Scholar 

  • Carinhas N et al (2013) Metabolic signatures of GS-CHO cell clones associated with butyrate treatment and culture phase transition. Biotechnol Bioeng 110(12):3244–3257

    CAS  PubMed  Google Scholar 

  • Choi J, Antoniewicz MR (2011) Tandem mass spectrometry: a novel approach for metabolic flux analysis. Metabol Eng 13(2):225–233

    CAS  Google Scholar 

  • Choi J, Grossbach MT, Antoniewicz MR (2012) Measuring complete isotopomer distribution of aspartate using gas chromatography/tandem mass spectrometry. Anal Chem 84(10):4628–4632

    CAS  PubMed  Google Scholar 

  • Crown SB, Antoniewicz MR (2013) Parallel labeling experiments and metabolic flux analysis: past, present and future methodologies. Metabol Eng 16:21–32

    CAS  Google Scholar 

  • Crown SB et al (2011) Resolving the TCA cycle and pentose-phosphate pathway of Clostridium acetobutylicum ATCC 824: isotopomer analysis, in vitro activities and expression analysis. Biotechnol J 6(3):300–305

    CAS  PubMed  Google Scholar 

  • Cruz H et al (2000) Effects of ammonia and lactate on growth, metabolism, and productivity of BHK cells. Enzyme Microb Technol 27(1–2):43–52

    CAS  PubMed  Google Scholar 

  • Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26:51–78

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dorka P et al (2009) Metabolic flux-based modeling of mAb production during batch and fed-batch operations. Bioproc Biosyst Eng 32(2):183–196

    CAS  Google Scholar 

  • Duarte TM et al (2014) 1H-NMR protocol for exometabolome analysis of cultured mammalian cells. Methods Mol Biol 1104:237–247

    PubMed  Google Scholar 

  • Follstad BD et al (1999) Metabolic flux analysis of hybridoma continuous culture steady state multiplicity. Biotechnol Bioeng 63(6):675–683

    CAS  PubMed  Google Scholar 

  • Forbes NS et al (2006) Estradiol stimulates the biosynthetic pathways of breast cancer cells: detection by metabolic flux analysis. Metabol Eng 8(6):639–652

    CAS  Google Scholar 

  • Gaglio D et al (2011) Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol 7(523):1–15

    Google Scholar 

  • Gambhir A et al (2003) Analysis of cellular metabolism of hybridoma cells at distinct physiological states. J Biosci Bioeng 95(4):317–327

    CAS  PubMed  Google Scholar 

  • Goudar C et al (2006) Towards industrial application of quasi real-time metabolic flux analysis for mammalian cell culture. Adv Biochem Eng/Biotechnol 101:99–118

    CAS  Google Scholar 

  • Goudar CT et al (2009) Error propagation from prime variables into specific rates and metabolic fluxes for mammalian cells in perfusion culture. Am Inst Chem Eng 25(4):986–998

    CAS  Google Scholar 

  • Goudar C et al (2010) Metabolic flux analysis of CHO cells in perfusion culture by metabolite balancing and 2D [13C, 1H] COSY NMR spectroscopy. Metabol Eng 12(2):138–149

    CAS  Google Scholar 

  • Grassian AR et al (2011) Erk regulation of pyruvate dehydrogenase flux through PDK4 modulates cell proliferation. Genes Dev 25(16):1716–1733

    CAS  PubMed Central  PubMed  Google Scholar 

  • Henry O, Durocher Y (2011) Enhanced glycoprotein production in HEK-293 cells expressing pyruvate carboxylase. Metabol Eng 13(5):499–507

    CAS  Google Scholar 

  • Henry O, Perrier M, Kamen A (2005) Metabolic flux analysis of HEK-293 cells in perfusion cultures for the production of adenoviral vectors. Metabol Eng 7:467–476

    CAS  Google Scholar 

  • Jazmin LJ, Young JD (2013) Isotopically nonstationary 13C metabolic flux analysis. In: Alper HS (ed) Systems metabolic engineering: methods and protocols. Humana Press, Totowa, pp 367–390

    Google Scholar 

  • Jeffrey FMH et al (2002) 13C isotopomer analysis of glutamate by tandem mass spectrometry. Anal Biochem 300(2):192–205

    CAS  PubMed  Google Scholar 

  • Kaper T et al (2007) Nanosensor detection of an immunoregulatory tryptophan influx/kynurenine efflux cycle. PLoS Biol 5(10):e257

    PubMed Central  PubMed  Google Scholar 

  • Keibler MA, Fendt S, Stephanopoulos G (2012) Expanding the concepts and tools of metabolic engineering to elucidate cancer metabolism. Biotechnol Prog 28(6):1409–1418

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kelley B (2009) Industrialization of mAb production technology: the bioprocessing industry at a crossroads. mAbs 1(5):443–452

    PubMed Central  PubMed  Google Scholar 

  • Khoo SHG, Al-Rubeai M (2009) Metabolic characterization of a hyper-productive state in an antibody producing NS0 myeloma cell line. Metabol Eng 11(3):199–211

    CAS  Google Scholar 

  • Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3:711–716

    CAS  PubMed  Google Scholar 

  • Kramer JA, Sagartz JE, Morris DL (2007) The application of discovery toxicology and pathology towards the design of safer pharmaceutical lead candidates. Nat Rev Drug Discov 6:636–649

    CAS  PubMed  Google Scholar 

  • Lao MS, Toth D (1997) Effects of ammonium and lactate on growth and metabolism of a recombinant Chinese hamster ovary cell culture. Biotechnol Prog 13(5):688–691

    CAS  PubMed  Google Scholar 

  • Lee WP et al (1998) Mass isotopomer study of the nonoxidative pathways of the pentose cycle with [1,2-13 C2] glucose. Am Physiol Soc 274:843–851

    Google Scholar 

  • Llaneras F, Picó J (2007) A procedure for the estimation over time of metabolic fluxes in scenarios where measurements are uncertain and/or insufficient. BMC Bioinform 8:421

    Google Scholar 

  • Lu D et al (2002) 13C NMR isotopomer analysis reveals a connection between pyruvate cycling and glucose-stimulated insulin secretion (GSIS). Proc Natl Acad Sci U S A 99(5):2708–2713

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maier K et al (2008) Identification of metabolic fluxes in hepatic cells from transient 13C-labeling experiments: part II. Flux estimation. Biotechnol Bioeng 100(2):355–370

    CAS  PubMed  Google Scholar 

  • Maier K et al (2009) Quantification of statin effects on hepatic cholesterol synthesis by transient (13)C-flux analysis. Metabol Eng 11:292–309

    CAS  Google Scholar 

  • Mancuso A et al (1994) Examination of primary metabolic pathways in a murine hybridoma with carbon-13 nuclear magnetic resonance spectroscopy. Biotechnol Bioeng 44(5):563–585

    CAS  PubMed  Google Scholar 

  • Martinez V et al (2010) Viral vectors for the treatment of alcoholism: use of metabolic flux analysis for cell cultivation and vector production. Metabol Eng 12(2):129–137

    CAS  Google Scholar 

  • Metallo CM, Walther JL, Stephanopoulos G (2009) Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells. J Biotechnol 144(3):167–174

    CAS  PubMed Central  PubMed  Google Scholar 

  • Metallo CM et al (2012) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481:380–384

    CAS  Google Scholar 

  • Millard P et al (2012) IsoCor: correcting MS data in isotope labeling experiments. Bioinformatics 28(9):1294–1296

    CAS  PubMed  Google Scholar 

  • Millard P et al (2013) IsoDesign: a software for optimizing the design of (13) C-metabolic flux analysis experiments. Biotechnol Bioeng 111(1):1–19

    Google Scholar 

  • Moxley JF et al (2009) Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p. Proc Natl Acad Sci U S A 106(16):6477–6482

    CAS  PubMed Central  PubMed  Google Scholar 

  • Munger J et al (2008) Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nat Biotechnol 26(10):1179–1186

    CAS  PubMed Central  PubMed  Google Scholar 

  • Naderi S et al (2011) Development of a mathematical model for evaluating the dynamics of normal and apoptotic Chinese hamster ovary cells. Biotechnol Prog 27(5):1197–1205

    CAS  PubMed  Google Scholar 

  • Nault R et al (2013) Assessment of energetic costs of AhR activation by β-naphthoflavone in rainbow trout (Oncorhynchus mykiss) hepatocytes using metabolic flux analysis. Toxicol Appl Pharmacol 271(1):86–94

    CAS  PubMed  Google Scholar 

  • Niittylae T et al (2009) Comparison of quantitative metabolite imaging tools and carbon-13 techniques for fluxomics. In: Belostotsky DA (ed) Methods in molecular biology, vol 553(1), pp 1–15. Humana Press, Clifton

    Google Scholar 

  • Niklas J, Heinzle E (2012) Metabolic flux analysis in systems biology of mammalian cells. Adv Biochem Eng/Biotechnol 127:109–132

    CAS  Google Scholar 

  • Niklas J, Noor F, Heinzle E (2009) Effects of drugs in subtoxic concentrations on the metabolic fluxes in human hepatoma cell line Hep G2. Toxicol Appl Pharmacol 240(3):327–336

    CAS  PubMed  Google Scholar 

  • Niklas J, Schneider K, Heinzle E (2010) Metabolic flux analysis in eukaryotes. Curr Opin Biotechnol 21(1):63–69

    CAS  PubMed  Google Scholar 

  • Niklas J et al (2013) Metabolism and metabolic burden by α1-antitrypsin production in human AGE1.HN cells. Metabol Eng 16:103–114

    CAS  Google Scholar 

  • Noh K, Wiechert W (2006) Experimental design principles for isotopically instationary C labeling experiments. Biotechnol Bioeng 94:234–251

    PubMed  Google Scholar 

  • Nöh K, Wahl A, Wiechert W (2006) Computational tools for isotopically instationary 13C labeling experiments under metabolic steady state conditions. Metabol Eng 8(6):554–577

    Google Scholar 

  • Nolan RP, Lee K (2011) Dynamic model of CHO cell metabolism. Metabol Eng 13(1):108–124

    CAS  Google Scholar 

  • Nyberg GB et al (1999) Metabolism of peptide amino acids by Chinese hamster ovary cells grown in a complex medium. Biotechnol Bioeng 62(3):324–335

    CAS  PubMed  Google Scholar 

  • Okumoto S, Takanaga H, Frommer WB (2009) Quantitative imaging for discovery and assembly of the metabo-regulome. New Phytol 180(2):271–295

    Google Scholar 

  • Omasa T et al (2010) Enhanced antibody production following intermediate addition based on flux analysis in mammalian cell continuous culture. Bioprocess Biosyst Eng 33(1):117–125

    CAS  PubMed  Google Scholar 

  • Ozturk SS, Palsson BO (1990) Chemical decomposition of glutamine in cell culture media: effect of media type, pH, and serum concentration. Biotechnol Prog 6:121–128

    CAS  PubMed  Google Scholar 

  • Possemato R et al (2011) Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476(7360):346–350

    CAS  PubMed Central  PubMed  Google Scholar 

  • Provost A, Bastin G (2004) Dynamic metabolic modelling under the balanced growth condition. J Proc Control 14(7):717–728

    CAS  Google Scholar 

  • Provost A et al (2006) Metabolic design of macroscopic bioreaction models: application to Chinese hamster ovary cells. Bioproc Biosyst Eng 29(5–6):349–366

    CAS  Google Scholar 

  • Quek L-E et al (2009) OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis. Microb Cell Fact 8:25

    PubMed Central  PubMed  Google Scholar 

  • Quek L-E et al (2010) Metabolic flux analysis in mammalian cell culture. Metabol Eng 12(2):161–171

    CAS  Google Scholar 

  • Sanfeliu A et al (1997) Identification of key patterns in the metabolism of hybridoma cells in culture. Enzyme Microb Technol 21:421–428

    CAS  Google Scholar 

  • Sauer U (2006) Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol 2:62

    PubMed Central  PubMed  Google Scholar 

  • Sauer U, Zamboni N (2008) From biomarkers to integrated network responses. Nat Biotechnol 26(10):1090–1092

    CAS  PubMed  Google Scholar 

  • Schmidt K et al (1997) Modeling isotopomer distributions in biochemical networks using isotopomer mapping matrices. Biotechnol Bioeng 55(6):831–840

    CAS  PubMed  Google Scholar 

  • Sengupta N, Rose ST, Morgan JA (2011) Metabolic flux analysis of CHO cell metabolism in the late non-growth phase. Biotechnol Bioeng 108(1):82–92

    CAS  PubMed  Google Scholar 

  • Sheikholeslami Z, Jolicoeur M, Henry O (2013) Probing the metabolism of an inducible mammalian expression system using extracellular isotopomer analysis. J Biotechnol 164(4):469–478

    CAS  PubMed  Google Scholar 

  • Srivastava S, Chan C (2008) Application of metabolic flux analysis to identify the mechanisms of free fatty acid toxicity to human hepatoma cell line. Biotechnol Bioeng 99(2):399–410

    CAS  PubMed Central  PubMed  Google Scholar 

  • Szyperski T (1995) Biosynthetically directed fractional 13C-labeling of proteinogenic amino acids. An efficient analytical tool to investigate intermediary metabolism. Eur J Biochem/FEBS 232(2):433–448

    CAS  Google Scholar 

  • Takanaga H, Chaudhuri B, Frommer WB (2008) GLUT1 and GLUT9 as major contributors to glucose influx in HepG2 cells identified by a high sensitivity intramolecular FRET glucose sensor. Biochim Biophys Acta 1778(4):1091–1099

    CAS  PubMed Central  PubMed  Google Scholar 

  • Teixeira AP et al (2007) Hybrid elementary flux analysis/nonparametric modeling: application for bioprocess control. BMC Bioinform 8:30

    Google Scholar 

  • Teixeira AP et al (2008) Combining metabolic flux analysis tools and 13C NMR to estimate intracellular fluxes of cultured astrocytes. Neurochem Int 52(3):478–486

    CAS  PubMed  Google Scholar 

  • Templeton N et al (2013) Peak antibody production is associated with increased oxidative metabolism in an industrially relevant fed-batch CHO cell culture. Biotechnol Bioeng 110(7):2013–2024

    CAS  PubMed  Google Scholar 

  • Vo TD, Palsson BO (2006) Isotopomer analysis of myocardial substrate metabolism: a systems biology approach. Biotechnol Bioeng 95:972–983

    CAS  PubMed  Google Scholar 

  • Wahl A et al (2008) Metabolic flux model for an anchorage-dependent MDCK cell line: characteristic growth phases and minimum substrate consumption flux distribution. Biotechnol Bioeng 101(1):135–152

    CAS  PubMed  Google Scholar 

  • Walther JL et al (2012) Optimization of 13C isotopic tracers for metabolic flux analysis in mammalian cells. Metabol Eng 14(2):162–171

    CAS  Google Scholar 

  • Wiechert W (2001) 13C metabolic flux analysis. Metabol Eng 3(3):195–206

    CAS  Google Scholar 

  • Wiechert W et al (1999) Bidirectional reaction steps in metabolic networks: III. Explicit solution and analysis of isotopomer labeling systems. Biotechnol Bioeng 66(2):69–85

    CAS  PubMed  Google Scholar 

  • Wiechert W et al (2001) A universal framework for 13C metabolic flux analysis. Metabol Eng 3(3):265–283

    CAS  Google Scholar 

  • Wiechert W et al (2007) Fluxomics: mass spectrometry versus quantitative imaging. Curr Opin Plant Biol 10(3):323–330

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wittmann C (2007) Fluxome analysis using GC-MS. Microb Cell Fact 6:6

    PubMed Central  PubMed  Google Scholar 

  • Xing Z et al (2011) Optimizing amino acid composition of CHO cell culture media for a fusion protein production. Proc Biochem 46(7):1423–1429

    CAS  Google Scholar 

  • Yoo H et al (2008) Quantifying reductive carboxylation flux of glutamine to lipid in a brown adipocyte cell line. J Biol Chem 283(30):20621–20627

    CAS  PubMed Central  PubMed  Google Scholar 

  • Young JD (2014) INCA: a computational platform for isotopically nonstationary metabolic flux analysis. Bioinformatics (Oxford, England): 11–13

    Google Scholar 

  • Zamboni N (2011) 13C metabolic flux analysis in complex systems. Curr Opin Biotechnol 22(1):103–108

    CAS  PubMed  Google Scholar 

  • Zamboni N et al (2009) (13)C-based metabolic flux analysis. Nat Protoc 4(6):878–892

    CAS  PubMed  Google Scholar 

  • Zamorano F, Wouwer AV, Bastin G (2010) A detailed metabolic flux analysis of an underdetermined network of CHO cells. J Biotechnol 150(4):497–508

    CAS  PubMed  Google Scholar 

  • Zupke C, Stephanopoulos G (1994) Modeling of isotope distributions and intracellular fluxes in metabolic networks using atom mapping matrices. Biotechnol Prog 10(5):489–498

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Fundação para a Ciência e a Tecnologia (FCT) through project grants PTDC/BBB-BIO/119501/2010 and PTDC/BBB-BSS/0518/2012. João V Sá and Tiago Duarte also acknowledge FCT for their Ph.D. grants PD/BD/52474/2014 and SFRH/BD/81553/2011, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana P. Teixeira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sá, J.V., Duarte, T.M., Carrondo, M.J.T., Alves, P.M., Teixeira, A.P. (2015). Metabolic Flux Analysis: A Powerful Tool in Animal Cell Culture. In: Al-Rubeai, M. (eds) Animal Cell Culture. Cell Engineering, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-10320-4_16

Download citation

Publish with us

Policies and ethics