Skip to main content

Mammalian Cell Line Selection Strategies for High-Producers

  • Chapter
  • First Online:
Animal Cell Culture

Part of the book series: Cell Engineering ((CEEN,volume 9))

Abstract

With the increase in mammalian cell-expressed recombinant biotherapeutics, the process of accelerating the selection of generated stable mammalian cell lines is becoming a critical step in cell line development pipelines. The selection process is known to be a major bottleneck in obtaining a cell line from development into manufacturing, but with the current sales of biotherapeutics reaching close to US$125 billion with monoclonal antibodies being more than 50 % of the sales, there is no sign of a decrease in demand and the amount of cell line development projects in the pipeline will keep increasing. This means that more efficient cost effective cell line selection strategies are critical to meet demand for affordable biologics. The current advancements in the cell line selection process has helped in this regard, by reducing some of the labor and time required to reduce heterogeneity and determine clonality of a cell line expressing a quality biotherapeutic protein at the highest specific productivity possible. However, challenges remain in dealing with the sheer volume of cells that need to go through the screening process for the determination of a stable highly productive clone. This chapter will provide a summary of the methodology and strategies employed to select the desired cell lines that meet the demands of the biopharmaceutical manufacturing environment from manual selection to automated systems that aid in the mammalian cell line selection process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdiche Y, Malashock D, Pinkerton A, Pons J (2008a) Determining kinetics and affinities of protein interactions using a parallel real-time label-free biosensor, the Octet. Anal Biochem 377:209–217

    CAS  PubMed  Google Scholar 

  • Abdiche YN, Malashock DS, Pons J (2008b) Probing the binding mechanism and affinity of tanezumab, a recombinant humanized anti-NGF monoclonal antibody, using a repertoire of biosensors. Protein Sci 17:1326–1335

    CAS  PubMed Central  PubMed  Google Scholar 

  • Abdiche YN, Malashock DS, Pinkerton A, Pons J (2009) Exploring blocking assays using Octet, ProteOn, and Biacore biosensors. Anal Biochem 386:172–180

    CAS  PubMed  Google Scholar 

  • Alete DE, Racher AJ, Birch JR, Stansfield SH, James DC, Smales CM (2005) Proteomic analysis of enriched microsomal fractions from GS-NS0 murine myeloma cells with varying secreted recombinant monoclonal antibody productivities. Proteomics 5:4689–4704

    CAS  PubMed  Google Scholar 

  • Al-Rubeai M (1995) Flow cytometry applications in cell culture. Marcel Dekker, New York

    Google Scholar 

  • Al-Rubeai M (1999) Monitoring of growth and productivity of animal cells by flow cytometry. In: Jenkins N (ed) Animal cell biotechnology: methods in biotechnology. Humana Press, Totawa

    Google Scholar 

  • Al-Rubeai M, Emery AN (1993) Flow cytometry in animal culture. Biotechnology (NY) 11:572–579

    CAS  Google Scholar 

  • Al-Rubeai M, Emery AN, Chalder S (1991) Flow cytometric study of cultured mammalian cells. J Biotechnol 19:67–81

    CAS  PubMed  Google Scholar 

  • Arnold LW, Lannigan J (2010) Practical issues in high-speed cell sorting. Curr Protoc Cytom 24:1–30, Chapter 1, Unit 1

    Google Scholar 

  • Assaraf YG, Schimke RT (1987) Identification of methotrexate transport deficiency in mammalian cells using fluoresceinated methotrexate and flow cytometry. Proc Natl Acad Sci U S A 84:7154–7158

    CAS  PubMed Central  PubMed  Google Scholar 

  • Atochina O, Mylvaganam R, Akselband Y, Mcgrath P (2004) Comparison of results using the gel microdrop cytokine secretion assay with ELISPOT and intracellular cytokine staining assay. Cytokine 27:120–128

    CAS  PubMed  Google Scholar 

  • Ayres KN (1982) High cloning efficiency of human lymphoid cells in agarose without feeder layers. J Natl Cancer Inst 68:919–923

    CAS  PubMed  Google Scholar 

  • Baens M, Noels H, Broeckx V, Hagens S, Fevery S, Billiau AD, Vankelecom H, Marynen P (2006) The dark side of EGFP: defective polyubiquitination. PLoS One 1:e54

    PubMed Central  PubMed  Google Scholar 

  • Bailey CG, Tait AS, Sunstrom NA (2002) High-throughput clonal selection of recombinant CHO cells using a dominant selectable and amplifiable metallothionein-GFP fusion protein. Biotechnol Bioeng 80:670–676

    CAS  PubMed  Google Scholar 

  • Baker KN, Rendall MH, Hills AE, Hoare M, Freedman RB, James DC (2001) Metabolic control of recombinant protein N-glycan processing in NS0 and CHO cells. Biotechnol Bioeng 73:188–202

    CAS  PubMed  Google Scholar 

  • Baldi L, Muller N, Picasso S, Jacquet R, Girard P, Thanh HP, Derow E, Wurm FM (2005) Transient gene expression in suspension HEK-293 cells: application to large-scale protein production. Biotechnol Prog 21:148–153

    CAS  PubMed  Google Scholar 

  • Barnes LM, Dickson AJ (2006) Mammalian cell factories for efficient and stable protein expression. Curr Opin Biotechnol 17:381–386

    CAS  PubMed  Google Scholar 

  • Barnes LM, Bentley CM, Dickson AJ (2000) Advances in animal cell recombinant protein production: GS-NS0 expression system. Cytotechnology 32:109–123

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barnes LM, Bentley CM, Dickson AJ (2001) Characterization of the stability of recombinant protein production in the GS-NS0 expression system. Biotechnol Bioeng 73:261–270

    CAS  PubMed  Google Scholar 

  • Baselga J, Pfister D, Cooper MR, Cohen R, Burtness B, Bos M, D’andrea G, Seidman A, Norton L, Gunnett K, Falcey J, Anderson V, Waksal H, Mendelsohn J (2000) Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. J Clin Oncol 18:904–914

    CAS  PubMed  Google Scholar 

  • Bazin H, Trinquet E, Mathis G (2002) Time resolved amplification of cryptate emission: a versatile technology to trace biomolecular interactions. J Biotechnol 82:233–250

    CAS  PubMed  Google Scholar 

  • Bebbington CR, Renner G, Thomson S, King D, Abrams D, Yarranton GT (1992) High-level expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selectable marker. Biotechnology (NY) 10:169–175

    CAS  Google Scholar 

  • Birch JR, Onakunle Y (2005) Biopharmaceutical proteins: opportunities and challenges. In: Smales M, James D (eds) Therapeutic proteins : methods and protocols. Springer, Dordrecht

    Google Scholar 

  • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    CAS  PubMed  Google Scholar 

  • Bogen KT, Enns L, Hall LC, Keating GA, Weinfeld M, Murphy G, Wu RW, Panteleakos FN (2001) Gel microdrop flow cytometry assay for low-dose studies of chemical and radiation cytotoxicity. Toxicology 160:5–10

    CAS  PubMed  Google Scholar 

  • Bonner RF, Emmert-Buck M, Cole K, Pohida T, Chuaqui R, Goldstein S, Liotta LA (1997) Laser capture microdissection: molecular analysis of tissue. Science 278:1481–1483

    CAS  PubMed  Google Scholar 

  • Borth N, Zeyda M, Kunert R, Katinger H (2000) Efficient selection of high-producing subclones during gene amplification of recombinant Chinese hamster ovary cells by flow cytometry and cell sorting. Biotechnol Bioeng 71:266–273

    CAS  PubMed  Google Scholar 

  • Brezinsky SC, Chiang GG, Szilvasi A, Mohan S, Shapiro RI, Maclean A, Sisk W, Thill G (2003) A simple method for enriching populations of transfected CHO cells for cells of higher specific productivity. J Immunol Methods 277:141–155

    CAS  PubMed  Google Scholar 

  • Broach JR, Hicks JB (1980) Replication and recombination functions associated with the yeast plasmid, 2 mu circle. Cell 21:501–508

    CAS  PubMed  Google Scholar 

  • Browne SM, Al-Rubeai M (2007) Selection methods for high-producing mammalian cell lines. Trends Biotechnol 25:425–432

    CAS  PubMed  Google Scholar 

  • Browne SM, Al-Rubeai M (2009) Selection methods for high-producing mammalian cell lines. In: Al-Rubeai M (ed) Cell line development, 6th edn. Springer, Dordrecht

    Google Scholar 

  • Buican TN, Neagley DL, Morrison WC, Upham BD (1989) Optical trapping, cell manipulation, and robotics. In: Gary C. Salzman (ed) New technologies in cytometry. SPIE, Los Angeles, pp 190–197

    Google Scholar 

  • Butler M (2005) Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl Microbiol Biotechnol 68:283–291

    CAS  PubMed  Google Scholar 

  • Cairns VR, Demaria CT, Poulin F, Sancho J, Liu P, Zhang J, Campos-Rivera J, Karey KP, Estes S (2011) Utilization of non-AUG initiation codons in a flow cytometric method for efficient selection of recombinant cell lines. Biotechnol Bioeng 108:2611–2622

    CAS  PubMed  Google Scholar 

  • Carlson DF, Fahrenkrug SC, Hackett PB (2012) Targeting DNA With Fingers and TALENs. Mol Ther Nucleic Acids 1:e3

    PubMed Central  PubMed  Google Scholar 

  • Caron AW, Massie B, Mosser DD (2000) Use of a micromanipulator for high-efficiency cloning of cells co-expressing fluorescent proteins. Methods Cell Sci 22:137–145

    CAS  PubMed  Google Scholar 

  • Caron AW, Nicolas C, Gaillet B, Ba I, Pinard M, Garnier A, Massie B, Gilbert R (2009) Fluorescent labeling in semi-solid medium for selection of mammalian cells secreting high-levels of recombinant proteins. BMC Biotechnol 9:42

    PubMed Central  PubMed  Google Scholar 

  • Carroll S, Al-Rubeai M (2004) The selection of high-producing cell lines using flow cytometry and cell sorting. Expert Opin Biol Ther 4:1821–1829

    CAS  PubMed  Google Scholar 

  • Carroll S, Al-Rubeai M (2005) ACSD labelling and magnetic cell separation: a rapid method of separating antibody secreting cells from non-secreting cells. J Immunol Methods 296:171–178

    CAS  PubMed  Google Scholar 

  • Carvalhal AV, Moreira JL, Carrondo MJ (2001) Strategies to modulate BHK cell proliferation by the regulation of IRF-1 expression. J Biotechnol 92:47–59

    CAS  PubMed  Google Scholar 

  • Charlet M, Kromenaker SJ, Srienc F (1995) Surface IgG content of murine hybridomas: direct evidence for variation of antibody secretion rates during the cell cycle. Biotechnol Bioeng 47:535–540

    CAS  PubMed  Google Scholar 

  • Che J, Wang H, Chen Z, Li X, Hou Y, Shan C, Cheng Y (2009) A new approach for pharmacokinetics of single-dose cetuximab in rhesus monkeys by surface plasmon resonance biosensor. J Pharm Biomed Anal 50:183–188

    CAS  PubMed  Google Scholar 

  • Chee Furng WD, Tin Kam WK, Tang GL, Kiat HC, Gek Sim YM (2005) Impact of dynamic online fed-batch strategies on metabolism, productivity and N-glycosylation quality in CHO cell cultures. Biotechnol Bioeng 89:164–177

    Google Scholar 

  • Choi JH, Ogunniyi AO, Du M, Du M, Kretschmann M, Eberhardt J, Love JC (2010) Development and optimization of a process for automated recovery of single cells identified by microengraving. Biotechnol Prog 26:888–895

    CAS  PubMed  Google Scholar 

  • Chon JH, Zarbis-Papastoitsis G (2011) Advances in the production and downstream processing of antibodies. New Biotechnol 28:458–463

    CAS  Google Scholar 

  • Christie A, Butler M (1999) The adaptation of BHK cells to a non-ammoniagenic glutamate-based culture medium. Biotechnol Bioeng 64:298–309

    CAS  PubMed  Google Scholar 

  • Clarke JB, Spier RE (1980) Variation in the susceptibility of BHK populations and cloned cell lines to three strains of foot-and-mouth disease virus. Arch Virol 63:1–9

    CAS  PubMed  Google Scholar 

  • Cockett MI, Bebbington CR, Yarranton GT (1990) High level expression of tissue inhibitor of metalloproteinases in Chinese hamster ovary cells using glutamine synthetase gene amplification. Biotechnology (NY) 8:662–667

    CAS  Google Scholar 

  • Coller HA, Coller BS (1986) Poisson statistical analysis of repetitive subcloning by the limiting dilution technique as a way of assessing hybridoma monoclonality. Methods Enzymol 121:412–417

    CAS  PubMed  Google Scholar 

  • Cooper MA (2006) Current biosensor technologies in drug discovery. Drug Discov World 7:7

    Google Scholar 

  • Cormack BP, Valdivia RH, Falkow S (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:33–38

    CAS  PubMed  Google Scholar 

  • Cost GJ, Freyvert Y, Vafiadis A, Santiago Y, Miller JC, Rebar E, Collingwood TN, Snowden A, Gregory PD (2010) BAK and BAX deletion using zinc-finger nucleases yields apoptosis-resistant CHO cells. Biotechnol Bioeng 105:330–340

    CAS  PubMed  Google Scholar 

  • Cox KM, Sterling JD, Regan JT, Gasdaska JR, Frantz KK, Peele CG, Black A, Passmore D, Moldovan-Loomis C, Srinivasan M, Cuison S, Cardarelli PM, Dickey LF (2006) Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat Biotechnol 24:1591–1597

    CAS  PubMed  Google Scholar 

  • Cresswell JR, Lin N, Richardson GA, Kayser KJ (2009) Cell Xpress™ applications in development and characterization of biopharmaceutical recombinant protein producing cell lines. In: Al-Rubeai M (ed) Cell line development. Springer, Dordrecht

    Google Scholar 

  • Davis JM, Pennington JE, Kubler AM, Conscience JF (1982) A simple, single-step technique for selecting and cloning hybridomas for the production of monoclonal antibodies. J Immunol Methods 50:161–171

    CAS  PubMed  Google Scholar 

  • Degorce F, Card A, Soh S, Trinquet E, Knapik GP, Xie B (2009) HTRF: a technology tailored for drug discovery – a review of theoretical aspects and recent applications. Curr Chem Genomics 3:22–32

    CAS  PubMed Central  PubMed  Google Scholar 

  • DeMaria CT, Cairns V, Schwarz C, Zhang J, Guerin M, Zuena E, Estes S, Karey KP (2007) Accelerated clone selection for recombinant CHO CELLS using a FACS-based high-throughput screen. Biotechnol Prog 23:465–472

    CAS  PubMed  Google Scholar 

  • Dumont C, Jolu EJP, Mabile M, Mathis G, Pouyat D (1996) Method of measuring the luminescence emitted in a luminescent assay. USA patent application 94,085, 18 Jun 1996

    Google Scholar 

  • Dysinger M, King LE (2012) Practical quantitative and kinetic applications of bio-layer interferometry for toxicokinetic analysis of a monoclonal antibody therapeutic. J Immunol Methods 379:30–41

    CAS  PubMed  Google Scholar 

  • Eagle H, Piez K (1962) The population-dependent requirement by cultured mammalian cells for metabolites which they can synthesize. J Exp Med 116:29–43

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fandl JP, Stahl N, Chen G, Yancopoulos GD (2008) Isolating cells expressing secreted proteins. USA patent application, 14 Oct 2008: US7435553B2

    Google Scholar 

  • Fox SR, Patel UA, Yap MG, Wang DI (2004) Maximizing interferon-gamma production by Chinese hamster ovary cells through temperature shift optimization: experimental and modeling. Biotechnol Bioeng 85:177–184

    CAS  PubMed  Google Scholar 

  • Freimark D, Jerome V, Freitag R (2010) A GFP-based method facilitates clonal selection of transfected CHO cells. Biotechnol J 5:24–31

    CAS  PubMed  Google Scholar 

  • Frykman S, Srienc F (1998) Quantitating secretion rates of individual cells: design of secretion assays. Biotechnol Bioeng 59:214–226

    CAS  PubMed  Google Scholar 

  • Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32:279–284

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fulwyler MJ, Glascock RB, Hiebert RD (1969) Device which separates minute particles according to electronically sensed volume. Rev Sci Instrum 40:42–48

    CAS  PubMed  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gapski GR, Whiteley JM, Rader JI, Cramer PL, Hendersen GB, Neef V, Huennekens FM (1975) Synthesis of a fluorescent derivative of amethopterin. J Med Chem 18:526–528

    CAS  PubMed  Google Scholar 

  • Geserick C, Bonarius HP, Kongerslev L, Hauser H, Mueller PP (2000) Enhanced productivity during controlled proliferation of BHK cells in continuously perfused bioreactors. Biotechnol Bioeng 69:266–274

    CAS  PubMed  Google Scholar 

  • Gibson MG, Ashey L, Newell AH, Bradley C (1993) Soft agar cloning with antibody overlay to identify Chinese hamster ovary clones secreting recombinant products. Biotechniques 15(594):597

    Google Scholar 

  • Gibson MG, Hodges K, Lowther L (1997) Detection and selection of cultured cells secreting recombinant product by soft agar cloning and antibody overlay. Methods Mol Biol 63:77–83

    CAS  PubMed  Google Scholar 

  • Givan AL (2004) Flow cytometry: an introduction. In: Hawley TS, Hawley RG (eds) Flow cytometry protocols. Springer, New York

    Google Scholar 

  • Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89:5547–5551

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gossen M, Bujard H (1995) Efficacy of tetracycline-controlled gene expression is influenced by cell type: commentary. Biotechniques 19:213–216, discussion 216–7

    CAS  PubMed  Google Scholar 

  • Gossen M, Freundlieb S, Bender G, Muller G, Hillen W, Bujard H (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268:1766–1769

    CAS  PubMed  Google Scholar 

  • Gray F, Kenney JS, Dunne JF (1995) Secretion capture and report web: use of affinity derivatized agarose microdroplets for the selection of hybridoma cells. J Immunol Methods 182:155–163

    CAS  PubMed  Google Scholar 

  • Gurtu V, Yan G, Zhang G (1996) IRES bicistronic expression vectors for efficient creation of stable mammalian cell lines. Biochem Biophys Res Commun 229:295–298

    CAS  PubMed  Google Scholar 

  • Ham RG (1965) Clonal growth of mammalian cells in a chemically defined, synthetic medium. Proc Natl Acad Sci U S A 53:288–293

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ham RG, Mckeehan WL (1979) Media and growth requirements. Methods Enzymol 58:44–93

    CAS  PubMed  Google Scholar 

  • Hamburger A, Salmon SE (1977) Primary bioassay of human myeloma stem cells. J Clin Invest 60:846–854

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, Bobrowicz P, Stadheim TA, Li H, Choi BK, Hopkins D, Wischnewski H, Roser J, Mitchell T, Strawbridge RR, Hoopes J, Wildt S, Gerngross TU (2006) Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313:1441–1443

    CAS  PubMed  Google Scholar 

  • Hammill L, Welles J, Carson GR (2000) The gel microdrop secretion assay: identification of a low productivity subpopulation arising during the production of human antibody in CHO cells. Cytotechnology 34:27–37

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanania EG, Fieck A, Stevens J, Bodzin LJ, Palsson BØ, Koller MR (2005) Automated in situ measurement of cell-specific antibody secretion and laser-mediated purification for rapid cloning of highly-secreting producers. Biotechnol Bioeng 91:872–876

    CAS  PubMed  Google Scholar 

  • Heim R, Tsien RY (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6:178–182

    CAS  PubMed  Google Scholar 

  • Herzenberg LA, Parks D, Sahaf B, Perez O, Roederer M, Herzenberg LA (2002) The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford. Clin Chem 48:1819–1827

    CAS  PubMed  Google Scholar 

  • Hollister JR, Jarvis DL (2001) Engineering lepidopteran insect cells for sialoglycoprotein production by genetic transformation with mammalian beta 1,4-galactosyltransferase and alpha 2,6-sialyltransferase genes. Glycobiology 11:1–9

    CAS  PubMed  Google Scholar 

  • Holmes P, Al-Rubeai M (1999) Improved cell line development by a high throughput affinity capture surface display technique to select for high secretors. J Immunol Methods 230:141–147

    CAS  PubMed  Google Scholar 

  • Hooker AD, Green NH, Baines AJ, Bull AT, Jenkins N, Strange PG, James DC (1999) Constraints on the transport and glycosylation of recombinant IFN-gamma in Chinese hamster ovary and insect cells. Biotechnol Bioeng 63:559–572

    CAS  PubMed  Google Scholar 

  • Hulett HR, Bonner WA, Barrett J, Herzenberg LA (1969) Cell sorting: automated separation of mammalian cells as a function of intracellular fluorescence. Science 166:747–749

    CAS  PubMed  Google Scholar 

  • Hunt L, Hacker DL, Grosjean F, De JM, Uebersax L, Jordan M, Wurm FM (2005) Low-temperature pausing of cultivated mammalian cells. Biotechnol Bioeng 89:157–163

    CAS  PubMed  Google Scholar 

  • Ich Guideline (1995) ICH Q5B guideline for industry – quality of biotechnological products: analysis of the expression construct in cells used for production of r-DNA derived protein products [Online]. ICH (International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use). http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q5B/Step4/Q5B_Guideline.pdf

  • Idusogie EE, Castro JM, Casipit C, Sato A, Terasawa Y, Mulkerrin MG (2008) Development of an antibody screening assay for selection of production cell lines. BioProcess Int 6:20–33

    CAS  Google Scholar 

  • James DC, Freedman RB, Hoare M, Ogonah OW, Rooney BC, Larionov OA, Dobrovolsky VN, Lagutin OV, Jenkins N (1995) N-glycosylation of recombinant human interferon-gamma produced in different animal expression systems. Biotechnology (NY) 13:592–596

    CAS  Google Scholar 

  • James DC, Goldman MH, Hoare M, Jenkins N, Oliver RW, Green BN, Freedman RB (1996) Posttranslational processing of recombinant human interferon-gamma in animal expression systems. Protein Sci 5:331–340

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jang SK, Krausslich HG, Nicklin MJ, Duke GM, Palmenberg AC, Wimmer E (1988) A segment of the 5’ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 62:2636–2643

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jenkins N, Parekh RB, James DC (1996) Getting the glycosylation right: implications for the biotechnology industry. Nat Biotechnol 14:975–981

    CAS  PubMed  Google Scholar 

  • Jones D, Kroos N, Anema R, Van MB, Vooys A, Van Der KS, Van Der HE, Smits S, Schouten J, Brouwer K, Lagerwerf F, Van BP, Opstelten DJ, Logtenberg T, Bout A (2003) High-level expression of recombinant IgG in the human cell line per.c6. Biotechnol Prog 19:163–168

    CAS  PubMed  Google Scholar 

  • Kacmar J, Srienc F (2005) Dynamics of single cell property distributions in Chinese hamster ovary cell cultures monitored and controlled with automated flow cytometry. J Biotechnol 120:410–420

    CAS  PubMed  Google Scholar 

  • Kamentsky LA, Kamentsky LD (1991) Microscope-based multiparameter laser scanning cytometer yielding data comparable to flow cytometry data. Cytometry 12:381–387

    CAS  PubMed  Google Scholar 

  • Kastern W, Sjobring U, Bjorck L (1992) Structure of peptostreptococcal protein L and identification of a repeated immunoglobulin light chain-binding domain. J Biol Chem 267:12820–12825

    CAS  PubMed  Google Scholar 

  • Kaufman RJ, Sharp PA (1982) Amplification and expression of sequences cotransfected with a modular dihydrofolate reductase complementary dna gene. J Mol Biol 159:601–621

    CAS  PubMed  Google Scholar 

  • Kaufman RJ, Bertino JR, Schimke RT (1978) Quantitation of dihydrofolate reductase in individual parental and methotrexate-resistant murine cells. Use of a fluorescence activated cell sorter. J Biol Chem 253:5852–5860

    CAS  PubMed  Google Scholar 

  • Kelley B (2009) Industrialization of mAb production technology: the bioprocessing industry at a crossroads. MAbs 1:443–452

    PubMed Central  PubMed  Google Scholar 

  • Kenney JS, Gray F, Ancel MH, Dunne JF (1995) Production of monoclonal antibodies using a secretion capture report web. Biotechnology (N Y) 13:787–790

    CAS  Google Scholar 

  • Kim SJ, Lee GM (1999) Cytogenetic analysis of chimeric antibody-producing CHO cells in the course of dihydrofolate reductase-mediated gene amplification and their stability in the absence of selective pressure. Biotechnol Bioeng 64:741–749

    CAS  PubMed  Google Scholar 

  • Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci 93:1156–1160

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim NS, Kim SJ, Lee GM (1998) Clonal variability within dihydrofolate reductase-mediated gene amplified Chinese hamster ovary cells: stability in the absence of selective pressure. Biotechnol Bioeng 60:679–688

    CAS  PubMed  Google Scholar 

  • Kim NS, Byun TH, Lee GM (2001) Key determinants in the occurrence of clonal variation in humanized antibody expression of cho cells during dihydrofolate reductase mediated gene amplification. Biotechnol Prog 17:69–75

    PubMed  Google Scholar 

  • Kim YG, Park B, Ahn JO, Jung JK, Lee HW, Lee EG (2012) New cell line development for antibody-producing Chinese hamster ovary cells using split green fluorescent protein. BMC Biotechnol 12:24

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kirchhoff S, Kroger A, Cruz H, Tummler M, Schaper F, Koster M, Hauser H (1996) Regulation of cell growth by IRF-1 in BHK-21 cells. Cytotechnology 22:147–156

    CAS  PubMed  Google Scholar 

  • Kobata A (1992) Structures and functions of the sugar chains of glycoproteins. Eur J Biochem 209:483–501

    CAS  PubMed  Google Scholar 

  • Kober L, Zehe C, Bode J (2012) Development of a novel ER stress based selection system for the isolation of highly productive clones. Biotechnol Bioeng 109:2599–2611

    CAS  PubMed  Google Scholar 

  • Koller MR, Hanania EG, Stevens J, Eisfeld TM, Sasaki GC, Fieck A, Palsson BO (2004) High-throughput laser-mediated in situ cell purification with high purity and yield. Cytometry A 61:153–161

    PubMed  Google Scholar 

  • Kremers GJ, Gilbert SG, Cranfill PJ, Davidson MW, Piston DW (2011) Fluorescent proteins at a glance. J Cell Sci 124:157–160

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kromenaker SJ, Srienc F (1994) Stability of producer hybridoma cell lines after cell sorting: a case study. Biotechnol Prog 10:299–307

    CAS  PubMed  Google Scholar 

  • Kuchenbecker M, Rehberger B, Schriek M, Gackowski J, Fehrenbach R (2007) Establishment of recombinant CHO cell lines under serum-free conditions. In: Smith R (ed) Cell technology for cell products. Springer, Dordrecht

    Google Scholar 

  • Kuystermans D, Al-Rubeai M (2011) Bioreactor systems for producing antibody from mammalian cells. In: Al-Rubeai M (ed) Antibody expression and production, 7th edn. Springer, Dordrecht

    Google Scholar 

  • Kuystermans D, Mohd A, Al-Rubeai M (2012) Automated flow cytometry for monitoring CHO cell cultures. Methods 56:358–365

    CAS  PubMed  Google Scholar 

  • La Merie Publishing (2013) Blockbuster biologics 2012, 1. http://www.pipelinereview.com/index.php/2013050850905/FREE-Reports/Blockbuster-Biologics-2012.html. Accessed 1 Jan 2014

  • Langone JJ (1982) Protein A of Staphylococcus aureus and related immunoglobulin receptors produced by streptococci and pneumonococci. Adv Immunol 32:157–252

    CAS  PubMed  Google Scholar 

  • Lee GM, Kim EJ, Kim NS, Yoon SK, Ahn YH, Song JY (1999) Development of a serum-free medium for the production of erythropoietin by suspension culture of recombinant Chinese hamster ovary cells using a statistical design. J Biotechnol 69:85–93

    CAS  PubMed  Google Scholar 

  • Lee C, Ly C, Sauerwald T, Kelly T, Moore G (2006) High-throughput screening of cell lines expressing monoclonal antibodies development of an immununoprecipitation-based method. BioProcess Int 4:32–35

    Google Scholar 

  • Leno M, Merten OW, Vuillier F, Hache J (1991) IgG production in hybridoma batch culture: kinetics of IgG mRNA, cytoplasmic-, secreted- and membrane-bound antibody levels. J Biotechnol 20:301–311

    CAS  PubMed  Google Scholar 

  • Lin N, Beckmann JL, Cresswell J, Ross JS, Delong B, Deeds Z, Caple MV (2007) Development and application of an animal-component free single-cell cloning medium for Chinese Hamster Ovary cell lines. In: Smith R (ed) Cell technology for cell products. Springer, Dordrecht

    Google Scholar 

  • Lin N, Cresswell JR, Richardson GA, Gerber MA, Kayser KJ (2008) Methods and applications of laser-enabled analysis and processing (LEAP). Curr Protoc Cytom 43:2.14.1–2.14.27. Wiley, Hoboken

    Google Scholar 

  • Lindgren K, Salmen A, Lundgren M, Bylund L, Ebler A, Faldt E, Sorvik L, Fenge C, Skoging-Nyberg U (2009) Automation of cell line development. Cytotechnology 59:1–10

    PubMed Central  PubMed  Google Scholar 

  • Liu HS, Jan MS, Chou CK, Chen PH, Ke NJ (1999) Is green fluorescent protein toxic to the living cells? Biochem Biophys Res Commun 260:712–717

    CAS  PubMed  Google Scholar 

  • Liu X, Constantinescu SN, Sun Y, Bogan JS, Hirsch D, Weinberg RA, Lodish HF (2000) Generation of mammalian cells stably expressing multiple genes at predetermined levels. Anal Biochem 280:20–28

    CAS  PubMed  Google Scholar 

  • Lucas BK, Giere LM, Demarco RA, Shen A, Chisholm V, Crowley CW (1996) High-level production of recombinant proteins in CHO cells using a dicistronic DHFR intron expression vector. Nucleic Acids Res 24:1774–1779

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lybarger L, Dempsey D, Franek KJ, Chervenak R (1996) Rapid generation and flow cytometric analysis of stable GFP-expressing cells. Cytometry 25:211–220

    CAS  PubMed  Google Scholar 

  • Macpherson I, Stoker M (1962) Polyoma transformation of hamster cell clones–an investigation of genetic factors affecting cell competence. Virology 16:147–151

    CAS  PubMed  Google Scholar 

  • Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM (2013a) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31:833–838

    CAS  PubMed  Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, Dicarlo JE, Norville JE, Church GM (2013b) RNA-guided human genome engineering via Cas9. Science 339:823–826

    CAS  PubMed Central  PubMed  Google Scholar 

  • Manz R, Assenmacher M, Pfluger E, Miltenyi S, Radbruch A (1995) Analysis and sorting of live cells according to secreted molecules, relocated to a cell-surface affinity matrix. Proc Natl Acad Sci U S A 92:1921–1925

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marder P, Maciak RS, Fouts RL, Baker RS, Starling JJ (1990) Selective cloning of hybridoma cells for enhanced immunoglobulin production using flow cytometric cell sorting and automated laser nephelometry. Cytometry 11:498–505

    CAS  PubMed  Google Scholar 

  • Mathis G (1993) Rare earth cryptates and homogeneous fluoroimmunoassays with human sera. Clin Chem 39:1953–1959

    CAS  PubMed  Google Scholar 

  • Mathis G (1995) Probing molecular interactions with homogeneous techniques based on rare earth cryptates and fluorescence energy transfer. Clin Chem 41:1391–1397

    CAS  PubMed  Google Scholar 

  • Mathis G (1999) HTRF(R) technology. J Biomol Screen 4:309–314

    CAS  PubMed  Google Scholar 

  • Mathupala S, Sloan AA (2009) An agarose-based cloning-ring anchoring method for isolation of viable cell clones. Biotechniques 46:305–307

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mckinney KL, Dilwith R, Belfort G (1991) Manipulation of heterogeneous hybridoma cultures for overproduction of monoclonal antibodies. Biotechnol Prog 7:445–454

    CAS  PubMed  Google Scholar 

  • Meilhoc E, Wittrup KD, Bailey JE (1989) Application of flow cytometric measurement of surface IgG in kinetic analysis of monoclonal antibody synthesis and secretion by murine hybridoma cells. J Immunol Methods 121:167–174

    CAS  PubMed  Google Scholar 

  • Melamed MR, Mullaney PF (1979) An historical review of the development of flow cytometers and sorters. In: Melamed MR, Mullaney PF, Mendelsohn ML (eds) Flow cytometry and sorting. Wiley, New York

    Google Scholar 

  • Meng YG, Liang J, Wong WL, Chisholm V (2000) Green fluorescent protein as a second selectable marker for selection of high producing clones from transfected CHO cells. Gene 242:201–207

    CAS  PubMed  Google Scholar 

  • Milbrandt JD, Azizkhan JC, Hamlin JL (1983) Amplification of a cloned Chinese hamster dihydrofolate reductase gene after transfer into a dihydrofolate reductase-deficient cell line. Mol Cell Biol 3:1274–1282

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mizuguchi H, Xu ZL, Ishii-Watabe A, Uchida E, Hayakawa T (2000) IRES-dependent second gene expression is significantly lower than cap-dependent first gene expression in a bicistronic vector. Mol Ther 1:376–382

    CAS  PubMed  Google Scholar 

  • Onadipe AO, Metcalfe HK, Freeman PR, James C (2001) Capillary-aided cell cloning. In: Lindner-Olsson E, Chatzissavidou N, Lüllau E (eds) Animal cell technology: from target to market. Springer, Dordrecht

    Google Scholar 

  • Patel TP, Parekh RB, Moellering BJ, Prior CP (1992) Different culture methods lead to differences in glycosylation of a murine IgG monoclonal antibody. Biochem J 285(Pt 3):839–845

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pichler J, Hesse F, Wieser M, Kunert R, Galosy SS, Mott JE, Borth N (2009) A study on the temperature dependency and time course of the cold capture antibody secretion assay. J Biotechnol 141:80–83

    CAS  PubMed  Google Scholar 

  • Powell KT, Weaver JC (1990) Gel microdroplets and flow cytometry: rapid determination of antibody secretion by individual cells within a cell population. Biotechnology (N Y) 8:333–337

    CAS  Google Scholar 

  • Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233

    CAS  PubMed  Google Scholar 

  • Puck TT, Marcus PI, Cieciura SJ (1956) Clonal growth of mammalian cells in vitro; growth characteristics of colonies from single HeLa cells with and without a feeder layer. J Exp Med 103:273–283

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qiao J, Oumard A, Wegloehner W, Bode J (2009) Novel tag-and-exchange (RMCE) strategies generate master cell clones with predictable and stable transgene expression properties. J Mol Biol 390:579–594

    CAS  PubMed  Google Scholar 

  • Raamsdonk LM, Teusink B, Broadhurst D, Zhang N, Hayes A, Walsh MC, Berden JA, Brindle KM, Kell DB, Rowland JJ, Westerhoff HV, Van DK, Oliver SG (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol 19:45–50

    CAS  PubMed  Google Scholar 

  • Racher A, Singh R (2005) Method of selecting antibody expressing cells. European patent application 02762376.8, 15 June 2005

    Google Scholar 

  • Raju TS, Briggs JB, Borge SM, Jones AJ (2000) Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiology 10:477–486

    CAS  PubMed  Google Scholar 

  • Ran FA, Hsu PD, Lin C-Y, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389

    CAS  PubMed  Google Scholar 

  • Read EK, Park JT, Shah RB, Riley BS, Brorson KA, Rathore AS (2010) Process analytical technology (PAT) for biopharmaceutical products: part I. concepts and applications. Biotechnol Bioeng 105:276–284

    CAS  PubMed  Google Scholar 

  • Sanford KK, Covalesky AB, Dupree LT, Earle WR (1961) Cloning of mammalian cells by a simplified capillary technique. Exp Cell Res 23:361–372

    CAS  PubMed  Google Scholar 

  • Sato G, Fisher HW, Puck TT (1957) Molecular growth requirements of single mammalian cells. Science 126:961–964

    CAS  PubMed  Google Scholar 

  • Scallon BJ, Tam SH, Mccarthy SG, Cai AN, Raju TS (2006) Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Mol Immunol 44:1524–1534

    PubMed  Google Scholar 

  • Schlaeger EJ, Christensen K (1999) Transient gene expression in mammalian cells grown in serum-free suspension culture. Cytotechnology 30:71–83

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schlake T, Bode J (1994) Use of mutated FLP recognition target (FRT) sites for the exchange of expression cassettes at defined chromosomal loci. Biochemistry 33:12746–12751

    CAS  PubMed  Google Scholar 

  • Schlatter S, Stansfield SH, Dinnis DM, Racher AJ, Birch JR, James DC (2005) On the optimal ratio of heavy to light chain genes for efficient recombinant antibody production by CHO cells. Biotechnol Prog 21:122–133

    CAS  PubMed  Google Scholar 

  • Selvin PR (2002) Principles and biophysical applications of lanthanide-based probes. Annu Rev Biophys Biomol Struct 31:275–302

    CAS  PubMed  Google Scholar 

  • Sen S, Hu WS, Srienc F (1990) Flow cytometric study of hybridoma cell culture: correlation between cell surface fluorescence and IgG production rate. Enzyme Microb Technol 12:571–576

    CAS  PubMed  Google Scholar 

  • Serpieri F, Inocencio A, Oliveira J, Pimenta A Jr, Garbuio A, Kalil J, Brigido M, Moro A (2010) Comparison of humanized IgG and FvFc anti-CD3 monoclonal antibodies expressed in CHO cells. Mol Biotechnol 45:218–225

    CAS  PubMed  Google Scholar 

  • Seth G, Hossler P, Yee JC, Hu WS (2006) Engineering cells for cell culture bioprocessing–physiological fundamentals. Adv Biochem Eng Biotechnol 101:119–164

    CAS  PubMed  Google Scholar 

  • Sethuraman N, Stadheim TA (2006) Challenges in therapeutic glycoprotein production. Curr Opin Biotechnol 17:341–346

    CAS  PubMed  Google Scholar 

  • Shaffer AL, Shapiro-Shelef M, Iwakoshi NN, Lee AH, Qian SB, Zhao H, Yu X, Yang L, Tan BK, Rosenwald A, Hurt EM, Petroulakis E, Sonenberg N, Yewdell JW, Calame K, Glimcher LH, Staudt LM (2004) XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21:81–93

    CAS  PubMed  Google Scholar 

  • Shapiro HM (2003) Practical flow cytometry. Wiley, Hoboken

    Google Scholar 

  • Shi S, Condon RG, Deng L, Saunders J, Hung F, Tsao YS, Liu Z (2011) A high-throughput automated platform for the development of manufacturing cell lines for protein therapeutics. J Vis Exp e3010:1–5

    Google Scholar 

  • Shimomura O (1979) Structure of the chromophore of Aequorea green fluorescent protein. FEBS Lett 104:220–222

    CAS  Google Scholar 

  • Sinacore MS, Charlebois TS, Harrison S, Brennan S, Richards T, Hamilton M, Scott S, Brodeur S, Oakes P, Leonard M, Switzer M, Anagnostopoulos A, Foster B, Harris A, Jankowski M, Bond M, Martin S, Adamson SR (1996) CHO DUKX cell lineages preadapted to growth in serum-free suspension culture enable rapid development of cell culture processes for the manufacture of recombinant proteins. Biotechnol Bioeng 52:518–528

    CAS  PubMed  Google Scholar 

  • Sinclair AM, Elliott S (2005) Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci 94:1626–1635

    CAS  PubMed  Google Scholar 

  • Sitton G, Hansgate A, Srienc F (2006) Transient gene expression in CHO cells monitored with automated flow cytometry. Cytotechnology 52:13–24

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sjobring U, Bjorck L, Kastern W (1991) Streptococcal protein G. Gene structure and protein binding properties. J Biol Chem 266:399–405

    CAS  PubMed  Google Scholar 

  • Sleiman RJ, Gray PP, Mccall MN, Codamo J, Sunstrom NA (2008) Accelerated cell line development using two-color fluorescence activated cell sorting to select highly expressing antibody-producing clones. Biotechnol Bioeng 99:578–587

    CAS  PubMed  Google Scholar 

  • Smales CM, Dinnis DM, Stansfield SH, Alete D, Sage EA, Birch JR, Racher AJ, Marshall CT, James DC (2004) Comparative proteomic analysis of GS-NS0 murine myeloma cell lines with varying recombinant monoclonal antibody production rate. Biotechnol Bioeng 88:474–488

    CAS  PubMed  Google Scholar 

  • Song M, Raphaelli K, Jones ML, Aliabadi-Zadeh K, Leung KM, Crowley D, Hughes B, Mahler S, Gray PP, Huang EP, Chin DY (2011) Clonal selection of high producing, stably transfected HEK293 cell lines utilizing modified, high-throughput FACS screening. J Chem Technol Biotechnol 86:935–941

    CAS  Google Scholar 

  • Sriburi R, Jackowski S, Mori K, Brewer JW (2004) XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum. J Cell Biol 167:35–41

    CAS  PubMed Central  PubMed  Google Scholar 

  • Subramanian S, Srienc F (1996) Quantitative analysis of transient gene expression in mammalian cells using the green fluorescent protein. J Biotechnol 49:137–151

    CAS  PubMed  Google Scholar 

  • Szaniszlo P, Rose WA, Wang N, Reece LM, Tsulaia TV, Hanania EG, Elferink CJ, Leary JF (2006) Scanning cytometry with a LEAP: laser-enabled analysis and processing of live cells in situ. Cytometry Part A 69A:641–651

    Google Scholar 

  • Szolar OH, Stranner S, Zinoecker I, Mudde GC, Himmler G, Waxenecker G, Nechansky A (2006) Qualification and application of a surface plasmon resonance-based assay for monitoring potential HAHA responses induced after passive administration of a humanized anti Lewis-Y antibody. J Pharm Biomed Anal 41:1347–1353

    CAS  PubMed  Google Scholar 

  • Tan H, Chen DJ, Tan Y, Witte KL (2008) Fiber-optic assay apparatus based on phase-shift interferometry. USA patent application Z 10/98L901, 1 July 2008

    Google Scholar 

  • Thastrup O, Tullin S, Poulsen LK, Bjørn SP (2001) Fluorescent proteins. USA patent application 08/819,612, 9 Jan 2001

    Google Scholar 

  • Turan S, Galla M, Ernst E, Qiao J, Voelkel C, Schiedlmeier B, Zehe C, Bode J (2011) Recombinase-mediated cassette exchange (RMCE): traditional concepts and current challenges. J Mol Biol 407:193–221

    CAS  PubMed  Google Scholar 

  • Turan S, Zehe C, Kuehle J, Qiao J, Bode J (2013) Recombinase-mediated cassette exchange (RMCE) – a rapidly-expanding toolbox for targeted genomic modifications. Gene 515:1–27

    CAS  PubMed  Google Scholar 

  • Turcanu V, Williams NA (2001) Cell identification and isolation on the basis of cytokine secretion: a novel tool for investigating immune responses. Nat Med 7:373–376

    CAS  PubMed  Google Scholar 

  • Underwood PA, Bean PA (1988) Hazards of the limiting-dilution method of cloning hybridomas. J Immunol Methods 107:119–128

    CAS  PubMed  Google Scholar 

  • Varki A (1998) Factors controlling the glycosylation potential of the Golgi apparatus. Trends Cell Biol 8:34–40

    CAS  PubMed  Google Scholar 

  • Walsh G, Jefferis R (2006) Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24:1241–1252

    CAS  PubMed  Google Scholar 

  • Weaver JC, Seissler PE, Threefoot SA, Lorenz JW, Huie T, Rodriguez R, Klibanov AM (1984) Microbiological measurements by immobilization of cells within small-volume elements. Ann N Y Acad Sci 434:363–372

    Google Scholar 

  • Weaver JC, Dunne JF, Gray F, Lazzari KG, Lin JB (1995) Antibody secretion assays using gel microdrops and flow cytometry. In: Al-Rubeai M, Emery AN (eds) Flow cytometry applications in cell culture. Marcel Dekker, New York

    Google Scholar 

  • Weaver JC, Mcgrath P, Adams S (1997) Gel microdrop technology for rapid isolation of rare and high producer cells. Nat Med 3:583–585

    CAS  PubMed  Google Scholar 

  • Wewetzer K, Seilheimer B (1995) Establishment of a single-step hybridoma cloning protocol using an automated cell transfer system: comparison with limiting dilution. J Immunol Methods 179:71–76

    CAS  PubMed  Google Scholar 

  • Wildy P, Stoker M (1958) Multiplication of solitary HeLa cells. Nature 181:1407–1408

    CAS  PubMed  Google Scholar 

  • Willey KP (1999) An elusive role for glycosylation in the structure and function of reproductive hormones. Hum Reprod Update 5:330–355

    CAS  PubMed  Google Scholar 

  • Williams GB, Threefoot SR, Lorenz JW, Bliss JG, Weaver JC, Demain AL, Klibanov AM (1987) Rapid detection of E. coli immobilized in gel microdroplets. Ann N Y Acad Sci 501:350–353

    CAS  PubMed  Google Scholar 

  • Wyss DF, Wagner G (1996) The structural role of sugars in glycoproteins. Curr Opin Biotechnol 7:409–416

    CAS  PubMed  Google Scholar 

  • Yamamura S, Kishi H, Tokimitsu Y, Kondo S, Honda R, Rao SR, Omori M, Tamiya E, Muraguchi A (2005) Single-cell microarray for analyzing cellular response. Anal Chem 77:8050–8056

    CAS  PubMed  Google Scholar 

  • Yang M, Butler M (2000a) Effect of ammonia on the glycosylation of human recombinant erythropoietin in culture. Biotechnol Prog 16:751–759

    CAS  PubMed  Google Scholar 

  • Yang M, Butler M (2000b) Effects of ammonia on CHO cell growth, erythropoietin production, and glycosylation. Biotechnol Bioeng 68:370–380

    CAS  PubMed  Google Scholar 

  • Ye J, Alvin K, Latif H, Hsu A, Parikh V, Whitmer T, Tellers M, De La Cruz Edmonds MC, Ly J, Salmon P, Markusen JF (2010) Rapid protein production using CHO stable transfection pools. Biotechnol Prog 26:1431–1437

    CAS  PubMed  Google Scholar 

  • Yoshida H, Oku M, Suzuki M, Mori K (2006) pXBP1(U) encoded in XBP1 pre-mRNA negatively regulates unfolded protein response activator pXBP1(S) in mammalian ER stress response. J Cell Biol 172:565–575

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshikawa T, Nakanishi F, Itami S, Kameoka D, Omasa T, Katakura Y, Kishimoto M, Suga K (2000a) Evaluation of stable and highly productive gene amplified CHO cell line based on the location of amplified genes. Cytotechnology 33:37–46

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshikawa T, Nakanishi F, Ogura Y, Oi D, Omasa T, Katakura Y, Kishimoto M, Suga K (2000b) Amplified gene location in chromosomal DNA affected recombinant protein production and stability of amplified genes. Biotechnol Prog 16:710–715

    CAS  PubMed  Google Scholar 

  • Yoshikawa T, Nakanishi F, Ogura Y, Oi D, Omasa T, Katakura Y, Kishimoto M, Suga KI (2001) Flow cytometry: an improved method for the selection of highly productive gene-amplified CHO cells using flow cytometry. Biotechnol Bioeng 74:435–442

    CAS  PubMed  Google Scholar 

  • Yoshimoto N, Kuroda S (2013) Single-cell-based breeding: rational strategy for the establishment of cell lines from a single cell with the most favorable properties. J Biosci Bioeng 117:394–400

    PubMed  Google Scholar 

  • Yoshimoto N, Kida A, Jie X, Kurokawa M, Iijima M, Niimi T, Maturana AD, Nikaido I, Ueda HR, Tatematsu K, Tanizawa K, Kondo A, Fujii I, Kuroda S (2013) An automated system for high-throughput single cell-based breeding. Nat Sci Rep 3:1–8, article 1191

    Google Scholar 

  • Zang M, Trautmann H, Gandor C, Messi F, Asselbergs F, Leist C, Fiechter A, Reiser J (1995) Production of recombinant proteins in Chinese hamster ovary cells using a protein-free cell culture medium. Biotechnology (NY) 13:389–392

    CAS  Google Scholar 

  • Zeyda M, Borth N, Kunert R, Katinger H (1999) Optimization of sorting conditions for the selection of stable, high-producing mammalian cell lines. Biotechnol Prog 15:953–957

    CAS  PubMed  Google Scholar 

  • Zhang G, Gurtu V, Kain SR (1996) An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells. Biochem Biophys Res Commun 227:707–711

    CAS  PubMed  Google Scholar 

  • Zhao R, Natarajan A, Srienc F (1999) A flow injection flow cytometry system for on-line monitoring of bioreactors. Biotechnol Bioeng 62:609–617

    CAS  PubMed  Google Scholar 

  • Zuk R, Choo S, Ma W, Witte K (2008) Enzyme activity measurements using bio-layer interferometry. US 11/326,689, 4 Nov 2008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darrin Kuystermans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kuystermans, D., Al-Rubeai, M. (2015). Mammalian Cell Line Selection Strategies for High-Producers. In: Al-Rubeai, M. (eds) Animal Cell Culture. Cell Engineering, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-10320-4_11

Download citation

Publish with us

Policies and ethics