Skip to main content

Discovery of Natural Products that Modulate the Activity of PPARgamma: A Source for New Antidiabetics

  • Chapter
  • First Online:
Foodinformatics

Abstract

More than 300 million people worldwide have diabetes. It is estimated that by the year 2035, the number of people affected by this disease will rise to 592 million. Peroxisome proliferator-activated receptor gamma (PPARγ) agonists such as thiazolidinediones (TZDs) have been proven to effectively reduce the risk of developing type II diabetes and the insulin resistance present when the disease is manifested. However, TZDs have several adverse effects that restrict their potential use. Recent evidence suggests that the classical transactivation activity of PPARγ could be responsible for the adverse effects of PPARγ agonists. Moreover, the inhibition of the CDK5-mediated phosphorylation of PPARγ at Ser273 is a key determinant of the antidiabetic effects of PPARγ agonists. Functional foods could serve as a new mode of preventing and managing type II diabetes. In this chapter, we review the evidence needed to demonstrate the beneficial effects and the absence of adverse effects of the PPARγ-targeted compounds both in vitro and in vivo. We also review the natural products and plant extracts that have been described to bind PPARγ and how these compounds can be discovered through virtual screening (VS) procedures. More research about the molecular mechanisms and the efficacy of PPARγ-mediated antidiabetic compounds is needed prior to developing functional foods for the prevention of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Diabetes Federation (2013) IDF Diabetes Atlas, 6th edn. http://www.idf.org/diabetesatlas

  2. Roglic G, Unwin N, Bennett PH et al (2005) The burden of mortality attributable to diabetes: realistic estimates for the year 2000. Diabetes Care 28:2130–2135

    Article  Google Scholar 

  3. World Health Organization (2013) Diabetes. Fact sheet N. 312. http://www.who.int/mediacentre/factsheets/fs312/en/

  4. Khavandi K, Amer H, Ibrahim B, Brownrigg J (2013) Strategies for preventing type 2 diabetes: an update for clinicians. Ther Adv Chronic Dis 4:242–261. doi:10.1177/2040622313494986

    Article  Google Scholar 

  5. Shaw JE, Zimmet PZ, de Courten M et al (1999) Impaired fasting glucose or impaired glucose tolerance. What best predicts future diabetes in Mauritius? Diabetes Care 22:399–402

    Article  CAS  Google Scholar 

  6. Rudkowska I (2009) Functional foods for health: focus on diabetes. Maturitas 62:263–269. doi:10.1016/j.maturitas.2009.01.011

    Article  CAS  Google Scholar 

  7. Perera P, Li Y (2011) Mushrooms as a functional food mediator in preventing and ameliorating diabetes. Funct Foods Health Dis 4:161–171

    Google Scholar 

  8. Ballali S, Lanciai F (2012) Functional food and diabetes: a natural way in diabetes prevention? Int J Food Sci Nutr 63 Suppl 1:51–61. doi:10.3109/09637486.2011.637487

    Article  Google Scholar 

  9. Garcia-Vallvé S, Palau J (1998) Nuclear receptors, nuclear-receptor factors, and nuclear-receptor-like orphans form a large paralog cluster in Homo sapiens. Mol Biol Evol 15:665–682

    Article  Google Scholar 

  10. Buchanan TA, Xiang AH, Peters RK et al (2002) Preservation of pancreatic beta-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk hispanic women. Diabetes 51:2796–2803

    Article  CAS  Google Scholar 

  11. Knowler WC, Hamman RF, Edelstein SL et al (2005) Prevention of type 2 diabetes with troglitazone in the Diabetes Prevention Program. Diabetes 54:1150–1156

    Article  Google Scholar 

  12. Gerstein HC, Yusuf S, Bosch J et al (2006) Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet 368:1096–1105. doi:10.1016/S0140-6736(06)69420-8

    Article  CAS  Google Scholar 

  13. DeFronzo RA, Abdul-Ghani MA (2011) Preservation of β-cell function: the key to diabetes prevention. J Clin Endocrinol Metab 96:2354–2366. doi:10.1210/jc.2011-0246

    Article  CAS  Google Scholar 

  14. Song MK, Roufogalis BD, Huang THW (2012) Modulation of diabetic retinopathy pathophysiology by natural medicines through PPAR-γ-related pharmacology. Br J Pharmacol 165:4–19. doi:10.1111/j.1476-5381.2011.01411.x

    Article  CAS  Google Scholar 

  15. Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356:2457–2471. doi:10.1056/NEJMoa072761

    Article  CAS  Google Scholar 

  16. Lewis JD, Ferrara A, Peng T et al (2011) Risk of bladder cancer among diabetic patients treated with pioglitazone: interim report of a longitudinal cohort study. Diabetes Care 34:916–922. doi:10.2337/dc10-1068

    Article  CAS  Google Scholar 

  17. Feldman PL, Lambert MH, Henke BR (2008) PPAR modulators and PPAR pan agonists for metabolic diseases: the next generation of drugs targeting peroxisome proliferator-activated receptors? Curr Top Med Chem 8:728–749

    Article  CAS  Google Scholar 

  18. Amato AA, Rocha Neves F de A (2012) Idealized PPARγ-based therapies: lessons from bench and bedside. PPAR Res 2012:978687. doi:10.1155/2012/978687

    Google Scholar 

  19. Bortolini M, Wright MB, Bopst M, Balas B (2013) Examining the safety of PPAR agonists—current trends and future prospects. Expert Opin Drug Saf 12:65–79. doi:10.1517/14740338.2013.741585

    Article  CAS  Google Scholar 

  20. Turner LW, Nartey D, Stafford RS et al (2014) Ambulatory treatment of Type 2 diabetes mellitus in the United States, 1997–2012. Diabetes Care 37:985–992. doi:10.2337/dc13-2097

    Article  Google Scholar 

  21. Gelman L, Feige JN, Desvergne B (2007) Molecular basis of selective PPARgamma modulation for the treatment of Type 2 diabetes. Biochim Biophys Acta 1771:1094–1107. doi:10.1016/j.bbalip.2007.03.004

    Article  CAS  Google Scholar 

  22. Bruning JB, Chalmers MJ, Prasad S et al (2007) Partial agonists activate PPARgamma using a helix 12 independent mechanism. Structure 15:1258–1271. doi:10.1016/j.str.2007.07.014

    Article  CAS  Google Scholar 

  23. Pochetti G, Godio C, Mitro N et al (2007) Insights into the mechanism of partial agonism: crystal structures of the peroxisome proliferator-activated receptor gamma ligand-binding domain in the complex with two enantiomeric ligands. J Biol Chem 282:17314–17324. doi:10.1074/jbc.M702316200

    Article  CAS  Google Scholar 

  24. Farce A, Renault N, Chavatte P (2009) Structural insight into PPARgamma ligands binding. Curr Med Chem 16:1768–1789

    Article  CAS  Google Scholar 

  25. Guasch L, Sala E, Valls C et al (2011) Structural insights for the design of new PPARgamma partial agonists with high binding affinity and low transactivation activity. J Comput Aided Mol Des 2011:717–728. doi:10.1007/s10822-011-9446-9

    Article  Google Scholar 

  26. Choi JH, Banks AS, Estall JL et al (2010) Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Nature 466:451–456. doi:10.1038/nature09291

    Article  CAS  Google Scholar 

  27. Choi JH, Banks AS, Kamenecka TM et al (2011) Antidiabetic actions of a non-agonist PPARγ ligand blocking Cdk5-mediated phosphorylation. Nature 477:477–481. doi:10.1038/nature10383

    Article  CAS  Google Scholar 

  28. Vázquez M, Silvestre JS, Prous JR (2002) Experimental approaches to study PPAR gamma agonists as antidiabetic drugs. Methods Find Exp Clin Pharmacol 24:515–523

    Article  Google Scholar 

  29. Merk D, Steinhilber D, Schubert-Zsilavecz M (2014) Characterizing ligands for farnesoid X receptor-available in vitro test systems for farnesoid X receptor modulator development. Expert Opin Drug Discov 9:27–37

    Article  CAS  Google Scholar 

  30. Guasch L, Sala E, Castell-Auví A et al (2012) Identification of PPARgamma partial agonists of natural origin (I): development of a virtual screening procedure and in vitro validation. PLoS One 7:e50816. doi:10.1371/journal.pone.0050816

    Article  CAS  Google Scholar 

  31. Simmonds MSJ, Howes M-JR (2005) Plants used in the treatment of diabetes. In: Soumyanath A (ed) Traditional medicines for Modern Times. Antidiabetic plants. Taylor & Francis Group, Abingdon, pp 19–82

    Google Scholar 

  32. Bnouham M, Ziyyat A, Mekhfi H et al (2006) Medicinal plants with potential antidiabetic activity-A review of ten years of herbal medicine research (1990–2000). Int J Diabetes Metab 14:1–25

    Google Scholar 

  33. Hong J (2011) Role of natural product diversity in chemical biology. Curr Opin Chem Biol 15:350–354. doi:10.1016/j.cbpa.2011.03.004

    Article  CAS  Google Scholar 

  34. Huang TH-W, Kota BP, Razmovski V, Roufogalis BD (2005) Herbal or natural medicines as modulators of peroxisome proliferator-activated receptors and related nuclear receptors for therapy of metabolic syndrome. Basic Clin Pharmacol Toxicol 96:3–14. doi:10.1111/j.1742-7843.2005.pto960102.x

    Article  CAS  Google Scholar 

  35. Rau O, Wurglics M, Dingermann T et al (2006) Screening of herbal extracts for activation of the human peroxisome proliferator-activated receptor. Pharmazie 61:952–956

    CAS  Google Scholar 

  36. Jacob A, Wu R, Zhou M, Wang P (2007) Mechanism of the anti-inflammatory effect of curcumin: PPAR-gamma activation. PPAR Res 2007:89369. doi:10.1155/2007/89369

    Google Scholar 

  37. Huang TH-W, Teoh AW, Lin B-L et al (2009) The role of herbal PPAR modulators in the treatment of cardiometabolic syndrome. Pharmacol Res 60:195–206. doi:10.1016/j.phrs.2009.03.020

    Article  CAS  Google Scholar 

  38. Mueller M, Jungbauer A (2009) Culinary plants, herbs and spices—a rich source of PPARγ ligands. Food Chem 117:660–667. doi:10.1016/j.foodchem.2009.04.063

    Article  CAS  Google Scholar 

  39. Christensen KB, Minet A, Svenstrup H et al (2009) Identification of plant extracts with potential antidiabetic properties: effect on human peroxisome proliferator-activated receptor (PPAR), adipocyte differentiation and insulin-stimulated glucose uptake. Phytother Res 23:1316–1325. doi:10.1002/ptr.2782

    Article  CAS  Google Scholar 

  40. Christensen KB, Jørgensen M, Kotowska D et al (2010) Activation of the nuclear receptor PPARγ by metabolites isolated from sage (Salvia officinalis L.). J Ethnopharmacol 132:127–133. doi:10.1016/j.jep.2010.07.054

    Article  CAS  Google Scholar 

  41. Christensen KB, Petersen RK, Kristiansen K, Christensen LP (2010) Identification of bioactive compounds from flowers of black elder (Sambucus nigra L.) that activate the human peroxisome proliferator-activated receptor (PPAR) gamma. Phytother Res 24 (Suppl 2):S129–132. doi:10.1002/ptr.3005

    Article  Google Scholar 

  42. Jungbauer A, Medjakovic S (2012) Anti-inflammatory properties of culinary herbs and spices that ameliorate the effects of metabolic syndrome. Maturitas 71:227–239. doi:10.1016/j.maturitas.2011.12.009

    Article  CAS  Google Scholar 

  43. Rozema E, Atanasov AG, Fakhrudin N et al (2012) Selected extracts of Chinese herbal medicines: their effect on NF-κB, PPARα and PPARγ and the respective bioactive compounds. Evid Based Complement Alternat Med 2012:983023. doi:10.1155/2012/983023

    Article  CAS  Google Scholar 

  44. Ortuño Sahagún D, Márquez-Aguirre AL, Quintero-Fabián S et al (2012) Modulation of PPAR-γ by Nutraceutics as complementary treatment for obesity-related disorders and inflammatory diseases. PPAR Res 2012:318613. doi:10.1155/2012/318613

    Article  Google Scholar 

  45. Yang MH, Avula B, Smillie T et al (2013) Screening of medicinal plants for PPARα and PPARγ activation and evaluation of their effects on glucose uptake and 3T3-L1 adipogenesis. Planta Med 79:1084–1095. doi:10.1055/s-0033-1350620

    Article  CAS  Google Scholar 

  46. Weidner C, Wowro SJ, Rousseau M et al (2013) Antidiabetic effects of chamomile flowers extract in obese mice through transcriptional stimulation of nutrient sensors of the peroxisome proliferator-activated receptor (PPAR) Family. PLoS One 8:e80335. doi:10.1371/journal.pone.0080335

    Article  CAS  Google Scholar 

  47. Puhl AC, Bernardes A, Silveira RL et al (2012) Mode of peroxisome proliferator-activated receptor γ activation by luteolin. Mol Pharmacol 81:788–799. doi:10.1124/mol.111.076216

    Article  CAS  Google Scholar 

  48. Weidner C, de Groot JC, Prasad A et al (2012) Amorfrutins are potent antidiabetic dietary natural products. Proc Natl Acad Sci U S A 109:7257–7262. doi:10.1073/pnas.1116971109

    Article  CAS  Google Scholar 

  49. Wu G, Yi J, Liu L et al (2013) Pseudoginsenoside F11, a novel partial PPAR γ agonist, promotes adiponectin oligomerization and secretion in 3T3-L1 adipocytes. PPAR Res 2013:701017. doi:10.1155/2013/701017

    Google Scholar 

  50. Hwang J-T, Kim S-H, Lee M-S et al (2007) Anti-obesity effects of ginsenoside Rh2 are associated with the activation of AMPK signaling pathway in 3T3-L1 adipocyte. Biochem Biophys Res Commun 364:1002–1008. doi:10.1016/j.bbrc.2007.10.125

    Article  CAS  Google Scholar 

  51. Hwang J-T, Lee M-S, Kim H-J et al (2009) Antiobesity effect of ginsenoside Rg3 involves the AMPK and PPAR-gamma signal pathways. Phytother Res 23:262–266. doi:10.1002/ptr.2606

    Article  CAS  Google Scholar 

  52. Gong Z, Huang C, Sheng X et al (2009) The role of tanshinone IIA in the treatment of obesity through peroxisome proliferator-activated receptor gamma antagonism. Endocrinology 150:104–113. doi:10.1210/en.2008-0322

    Article  CAS  Google Scholar 

  53. Lee H-M, Lee O-H, Lee B-Y (2010) Effect of Ginsenoside Rg3 and Rh2 on Glucose uptake in insulin-resistant muscle cells. J Korean Soc Appl Biol Chem 53:106–109. doi:10.3839/jksabc.2010.018

    Article  CAS  Google Scholar 

  54. Yoshikawa M, Matsuda H (2005) Traditional Chinese and Kampo medicines. In: Soumyanath A (ed) Traditional medicines for Modern Times. Antidiabetic plants. Taylor & Francis Group, Abingdon, pp 135–149

    Google Scholar 

  55. Kuroda M, Mimaki Y, Sashida Y et al (2003) Phenolics with PPAR-gamma ligand-binding activity obtained from licorice (Glycyrrhiza uralensis roots) and ameliorative effects of glycyrin on genetically diabetic KK-A(y) mice. Bioorg Med Chem Lett 13:4267–4272

    Article  CAS  Google Scholar 

  56. Nakagawa K, Kishida H, Arai N et al (2004) Licorice flavonoids suppress abdominal fat accumulation and increase in blood glucose level in obese diabetic KK-A(y) mice. Biol Pharm Bull 27:1775–1778

    Article  CAS  Google Scholar 

  57. Kuroda M, Mimaki Y, Honda S et al (2010) Phenolics from Glycyrrhiza glabra roots and their PPAR-gamma ligand-binding activity. Bioorg Med Chem 18:962–970. doi:10.1016/j.bmc.2009.11.027

    Article  CAS  Google Scholar 

  58. Salam NK, Huang TH-W, Kota BP et al (2008) Novel PPAR-gamma agonists identified from a natural product library: a virtual screening, induced-fit docking and biological assay study. Chem Biol Drug Des 71:57–70. doi:10.1111/j.1747-0285.2007.00606.x

    Article  CAS  Google Scholar 

  59. Zarzuelo A, Jiménez I, Gámez MJ et al (1996) Effects of luteolin 5-O-beta-rutinoside in streptozotocin-induced diabetic rats. Life Sci 58:2311–2316

    Article  CAS  Google Scholar 

  60. De Groot JC, Weidner C, Krausze J et al (2013) Structural characterization of amorfrutins bound to the peroxisome proliferator-activated receptor γ. J Med Chem 56:1535–1543. doi:10.1021/jm3013272

    Article  CAS  Google Scholar 

  61. Atanasov AG, Wang JN, Gu SP et al (2013) Honokiol: a non-adipogenic PPARγ agonist from nature. Biochim Biophys Acta 1830:4813–4819. doi:10.1016/j.bbagen.2013.06.021

    Google Scholar 

  62. Cichewicz RH, Clifford LJ (2005) Native American medicine. In: Soumyanath A (ed) Traditional medicines for Modern Times. Antidiabetic plants. Taylor & Francis Group, Abingdon, pp 169–177

    Google Scholar 

  63. Leach MJ, Kumar S (2012) Cinnamon for diabetes mellitus. Cochrane database Syst Rev 9:CD007170. doi:10.1002/14651858.CD007170.pub2

    Google Scholar 

  64. Weisberg SP, Leibel R, Tortoriello D V (2008) Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity. Endocrinology 149:3549–3558. doi:10.1210/en.2008-0262

    Article  CAS  Google Scholar 

  65. Rinwa P, Kaur B, Jaggi AS, Singh N (2010) Involvement of PPAR-gamma in curcumin-mediated beneficial effects in experimental dementia. Naunyn Schmiedebergs Arch Pharmacol 381:529–539. doi:10.1007/s00210-010-0511-z

    Article  CAS  Google Scholar 

  66. Wang H-M, Zhao Y-X, Zhang S et al (2010) PPARgamma agonist curcumin reduces the amyloid-beta-stimulated inflammatory responses in primary astrocytes. J Alzheimers Dis 20:1189–1199. doi:10.3233/JAD-2010-091336

    CAS  Google Scholar 

  67. Narala VR, Smith MR, Adapala RK et al (2009) Curcumin is not a ligand for peroxisome proliferator-activated receptor-γ. Gene Ther Mol Biol 13:20–25

    CAS  Google Scholar 

  68. Sato M, Tai T, Nunoura Y et al (2002) Dehydrotrametenolic acid induces preadipocyte differentiation and sensitizes animal models of noninsulin-dependent diabetes mellitus to insulin. Biol Pharm Bull 25:81–86

    Article  Google Scholar 

  69. Li T-H, Hou C-C, Chang CL-T, Yang W-C (2011) Anti-hyperglycemic properties of crude extract and triterpenes from Poria cocos. Evid Based Complement Alternat Med 2011:128402. doi:10.1155/2011/128402

    Google Scholar 

  70. Guasch L, Sala E, Mulero M et al (2013) Identification of PPARgamma partial agonists of natural origin (II): in silico prediction in natural extracts with known antidiabetic activity. PLoS One 8:e55889. doi:10.1371/journal.pone.0055889

    Article  CAS  Google Scholar 

  71. Mueller M, Lukas B, Novak J et al (2008) Oregano: a source for peroxisome proliferator-activated receptor gamma antagonists. J Agric Food Chem 56:11621–11630. doi:10.1021/jf802298w

    Article  CAS  Google Scholar 

  72. Fiévet C, Fruchart J-C, Staels B (2006) PPARalpha and PPARgamma dual agonists for the treatment of type 2 diabetes and the metabolic syndrome. Curr Opin Pharmacol 6:606–614. doi:10.1016/j.coph.2006.06.009

    Article  Google Scholar 

  73. Lin H-R (2012) Sesquiterpene lactones from Tithonia diversifolia act as peroxisome proliferator-activated receptor agonists. Bioorg Med Chem Lett 22:2954–2958. doi:10.1016/j.bmcl.2012.02.043

    Article  CAS  Google Scholar 

  74. Shen P, Liu MH, Ng TY et al (2006) Differential effects of isoflavones, from Astragalus membranaceus and Pueraria thomsonii, on the activation of PPARalpha, PPARgamma, and adipocyte differentiation in vitro. J Nutr 136:899–905

    CAS  Google Scholar 

  75. Agget P, Alexander J, Alles M et al (1999) Scientific concepts of functional foods in Europe. Consensus document. Br J Nutr 81(Suppl 1):S1–27

    Google Scholar 

  76. Penumetcha M, Santanam N (2012) Nutraceuticals as ligands of PPARγ. PPAR Res 2012:858352. doi:10.1155/2012/858352

    Google Scholar 

  77. Song CM, Lim SJ, Tong JC (2009) Recent advances in computer-aided drug design. Brief Bioinform 10:579–591. doi:10.1093/bib/bbp023

    Article  CAS  Google Scholar 

  78. Di L, Kerns EH, Carter GT (2009) Drug-like property concepts in pharmaceutical design. Curr Pharm Des 15:2184–2194

    Article  CAS  Google Scholar 

  79. Peach ML, Zakharov AV, Liu R et al (2012) Computational tools and resources for metabolism-related property predictions. 1. Overview of publicly available (free and commercial) databases and software. Future Med Chem 4:1907–1932. doi:10.4155/fmc.12.150

    Article  CAS  Google Scholar 

  80. Wermuth CG, Ganellin CR, Lindberg P, Mitscher LA (1998) Glossary of terms used in medicinal chemistry (IUPAC Recommendations 1998). Pure Appl Chem 70:1129–1143. doi:10.1351/pac199870051129

    Article  CAS  Google Scholar 

  81. Caporuscio F, Tafi A (2011) Pharmacophore modelling: a forty year old approach and its modern synergies. Curr Med Chem 18:2543–2553

    Article  CAS  Google Scholar 

  82. Dixon SL, Smondyrev AM, Knoll EH et al (2006) PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aided Mol Des 20:647–671. doi:10.1007/s10822-006-9087-6

    Google Scholar 

  83. Wolber G, Langer T (2005) LigandScout: 3-D Pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model 45:160–169. doi:10.1021/ci049885e

    Article  CAS  Google Scholar 

  84. Sousa SF, Ribeiro AJM, Coimbra JTS et al (2013) Protein-ligand docking in the new millennium—a retrospective of 10 years in the field. Curr Med Chem 20:2296–2314. doi:10.2174/0929867311320180002

    Article  CAS  Google Scholar 

  85. Sousa SF, Fernandes PA, Ramos MJ (2006) Protein–ligand docking: current status and future challenges. Proteins Struct Funct Bioinforma 65:15–26. doi:10.1002/prot.21082

    Article  CAS  Google Scholar 

  86. Kitchen DB, Stahura FL, Bajorath J (2004) Computational techniques for diversity analysis and compound classification. Mini Rev Med Chem 4:1029–1039

    Article  CAS  Google Scholar 

  87. Maggiora GM, Vogt M, Stumpfe D, Bajorath J (2013) Molecular similarity in medicinal chemistry. J Med Chem. doi:10.1021/jm401411z

    Google Scholar 

  88. Verma J, Khedkar VM, Coutinho EC (2010) 3D-QSAR in drug design—a review. Curr Top Med Chem 10:95–115

    Article  CAS  Google Scholar 

  89. Fischer PM (2008) Computational chemistry approaches to drug discovery in signal transduction. Biotechnol J 3:452–470. doi:10.1002/biot.200700259

    Article  CAS  Google Scholar 

  90. Kar S, Roy K (2013) How far can virtual screening take us in drug discovery? Expert Opin Drug Discov 8:245–261. doi:10.1517/17460441.2013.761204

    Article  CAS  Google Scholar 

  91. Hawkins PCD, Warren GL, Skillman AG, Nicholls A (2008) How to do an evaluation: pitfalls and traps. J Comput Aided Mol Des 22:179–190. doi:10.1007/s10822-007-9166-3

    Article  CAS  Google Scholar 

  92. Cereto-Massagué A, Ojeda MJ, Joosten RP et al (2013) The good, the bad and the dubious: VHELIBS, a validation helper for ligands and binding sites. J Cheminform 5:36. doi:10.1186/1758-2946-5-36

    Article  Google Scholar 

  93. Kirchmair J, Markt P, Distinto S et al (2008) Evaluation of the performance of 3D virtual screening protocols: RMSD comparisons, enrichment assessments, and decoy selection–what can we learn from earlier mistakes? J Comput Aided Mol Des 22:213–228. doi:10.1007/s10822-007-9163-6

    Article  CAS  Google Scholar 

  94. Cereto-Massagué A, Guasch L, Valls C et al (2012) DecoyFinder: an easy-to-use python GUI application for building target-specific decoy sets. Bioinformatics 28:1661–1662. doi:10.1093/bioinformatics/bts249

    Article  Google Scholar 

  95. Truchon J-F, Bayly CI (2007) Evaluating virtual screening methods: good and bad metrics for the “Early Recognition” problem. J Chem Inf Model 47:488–508. doi:10.1021/ci600426e

    Article  CAS  Google Scholar 

  96. Tanrikulu Y, Rau O, Schwarz O et al (2009) Structure-based pharmacophore screening for natural-product-derived PPARgamma agonists. Chembiochem 10:75–78. doi:10.1002/cbic.200800520

    Article  CAS  Google Scholar 

  97. Rupp M, Schroeter T, Steri R et al (2010) From machine learning to natural product derivatives that selectively activate transcription factor {PPAR} gamma. ChemMedChem 5:191–194. doi:10.1002/cmdc.200900469

    Article  CAS  Google Scholar 

  98. Fakhrudin N, Ladurner A, Atanasov AG et al (2010) Computer-aided discovery, validation, and mechanistic characterization of novel neolignan activators of peroxisome proliferator-activated receptor gamma. Mol Pharmacol 77:559–566. doi:10.1124/mol.109.062141

    Article  CAS  Google Scholar 

  99. Petersen RK, Christensen KB, Assimopoulou AN et al (2011) Pharmacophore-driven identification of PPARγ agonists from natural sources. J Comput Aided Mol Des 25:107–116. doi:10.1007/s10822-010-9398-5

    Article  CAS  Google Scholar 

  100. Irwin JJ, Sterling T, Mysinger MM et al (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52:1757–1768. doi:10.1021/ci3001277

    Article  CAS  Google Scholar 

  101. Li Y, Li L, Chen J et al (2009) 7-Chloroarctinone-b as a new selective PPARgamma antagonist potently blocks adipocyte differentiation. Acta Pharmacol Sin 30:1351–1358. doi:10.1038/aps.2009.113

    Article  CAS  Google Scholar 

  102. Hwang BY, Lee J-H, Nam JB et al (2002) Two new furanoditerpenes from Saururus chinenesis and their effects on the activation of peroxisome proliferator-activated receptor gamma. J Nat Prod 65:616–617

    Article  CAS  Google Scholar 

  103. Choi S-S, Cha B-Y, Iida K et al (2011) Artepillin C, as a PPARγ ligand, enhances adipocyte differentiation and glucose uptake in 3T3-L1 cells. Biochem Pharmacol 81:925–933. doi:10.1016/j.bcp.2011.01.002

    Article  CAS  Google Scholar 

  104. Malapaka RR V, Khoo S, Zhang J et al (2012) Identification and mechanism of 10-carbon fatty acid as modulating ligand of peroxisome proliferator-activated receptors. J Biol Chem 287:183–195. doi:10.1074/jbc.M111.294785

    Article  CAS  Google Scholar 

  105. Atanasov AG, Blunder M, Fakhrudin N et al (2013) Polyacetylenes from Notopterygium incisum—new selective partial agonists of peroxisome proliferator-activated receptor-gamma. PLoS One 8:e61755. doi:10.1371/journal.pone.0061755

    Article  CAS  Google Scholar 

  106. Pferschy-Wenzig E-M, Atanasov AG, Malainer C et al (2014) Identification of isosilybin a from milk thistle seeds as an agonist of peroxisome proliferator-activated receptor gamma. J Nat Prod 77:842–847. doi:10.1021/np400943b

    Google Scholar 

  107. Dang Z-C, Audinot V, Papapoulos SE et al (2003) Peroxisome proliferator-activated receptor gamma (PPARgamma) as a molecular target for the soy phytoestrogen genistein. J Biol Chem 278:962–967. doi:10.1074/jbc.M209483200

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This manuscript was edited for English-language fluency by American Journal Experts. This study was supported by grant AGL2011-25831/ALI from the Spanish Government and ACC1Ó program [TECCT11-1-0012] as well as grant XRQTC from ‘Generalitat de Catalunya’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Garcia-Vallve .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Garcia-Vallve, S., Guasch, L., Mulero, M. (2014). Discovery of Natural Products that Modulate the Activity of PPARgamma: A Source for New Antidiabetics. In: Martinez-Mayorga, K., Medina-Franco, J. (eds) Foodinformatics. Springer, Cham. https://doi.org/10.1007/978-3-319-10226-9_6

Download citation

Publish with us

Policies and ethics