Skip to main content

TALEN-Based Genome Editing in Yeast

  • Chapter
  • First Online:
Genetic Transformation Systems in Fungi, Volume 1

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

The development of nuclease-mediated Genome Editing represents a significant technological advance and may prove to be as important as PCR and DNA sequencing. Regardless, this technology puts the power of genome re-orchestration into the hands of research scientists for the first time and may lead to a paradigm shift in many biological fields. We present background information, so the reader has a greater understanding for the basis of this technology. We also discuss TAL effector nuclease (TALEN) as the latest engineered nuclease tool, its implementation and uses and present a yeast-based protocol that may be helpful in transitioning this technology to other fungal species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ansai S, Inohaya K, Yoshiura Y, Schartl M, Uemura N, Takahashi R et al (2014) Design, evaluation, and screening methods for efficient targeted mutagenesis with transcription activator-like effector nucleases in medaka. Dev Growth Differ 56(1):98–107

    Article  PubMed  CAS  Google Scholar 

  • Arnau J, Ortiz A, Gomez-Fernández JC, Murillo FJ, Torres-Martínez S (1988) Liposome-protoplast fusion in Phycomyces blakesleeanus. FEMS Microbiol Lett 51(1):37–40

    Article  CAS  Google Scholar 

  • Bailey AM, Mena GL, Herrera-Estrella L (1993) Transformation of four pathogenic Phytophthora spp by microprojectile bombardment on intact mycelia. Curr Genet 23(1):42–46

    Article  PubMed  CAS  Google Scholar 

  • Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436

    Article  PubMed  CAS  Google Scholar 

  • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326(5959):1509–1512

    Article  PubMed  CAS  Google Scholar 

  • Boeke JD, LaCroute F, Fink GR (1984) A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197(2):345–346

    Article  PubMed  CAS  Google Scholar 

  • Bogdanove AJ, Schornack S, Lahaye T (2010) TAL effectors: finding plant genes for disease and defense. Curr Opin Plant Biol 13(4):394–401

    Article  PubMed  CAS  Google Scholar 

  • Briggs AW, Rios X, Chari R, Yang L, Zhang F, Mali P et al (2012) Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers. Nucleic Acids Res 40(15):e117

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M et al (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci U S A 109(43):17382–17387

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C et al (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39(12):e82

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen XL, Yang J, Peng YL (2011) Large-scale insertional mutagenesis in Magnaporthe oryzae by Agrobacterium tumefaciens-mediated transformation. Methods Mol Biol 722:213–224

    Article  PubMed  CAS  Google Scholar 

  • Cong L, Zhou R, Kuo YC, Cunniff M, Zhang F (2012) Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun 3:968

    Article  PubMed  PubMed Central  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Crocker J, Stern DL (2013) TALE-mediated modulation of transcriptional enhancers in vivo. Nat Methods 10(8):762–767

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dahlem TJ, Hoshijima K, Jurynec MJ, Gunther D, Starker CG, Locke AS et al (2012) Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet 8(8):e1002861

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41(7):4336–4343

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Djulic A, Schmid A, Lenz H, Sharma P, Koch C, Wirsel SG et al (2011) Transient transformation of the obligate biotrophic rust fungus Uromyces fabae using biolistics. Fungal Biol 115(7):633–642

    Article  PubMed  Google Scholar 

  • Doyon Y, Vo TD, Mendel MC, Greenberg SG, Wang J, Xia DF et al (2011) Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods 8(1):74–79

    Article  PubMed  CAS  Google Scholar 

  • Dujon B (1989) Group I, introns as mobile genetic elements: facts and mechanistic speculations—a review. Gene 82(1):91–114

    Article  PubMed  CAS  Google Scholar 

  • Elliott B, Richardson C, Winderbaum J, Nickoloff JA, Jasin M (1998) Gene conversion tracts from double-strand break repair in mammalian cells. Mol Cell Biol 18(1):93–101

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96

    Article  PubMed  CAS  Google Scholar 

  • Guo J, Gaj T, Barbas CF 3rd (2010) Directed evolution of an enhanced and highly efficient FokI cleavage domain for zinc finger nucleases. J Mol Biol 400(1):96–107

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gupta A, Hall VL, Kok FO, Shin M, McNulty JC, Lawson ND et al (2013) Targeted chromosomal deletions and inversions in zebrafish. Genome Res 23(6):1008–1017

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Herzog RW, Daniell H, Singh NK, Lemke PA (1996) A comparative study on the transformation of Aspergillus nidulans by microprojectile bombardment of conidia and a more conventional procedure using protoplasts treated with polyethyleneglycol. Appl Microbiol Biotechnol 45(3):333–337

    Article  CAS  Google Scholar 

  • Hinnen A, Hicks JB, Fink GR (1978) Transformation of yeast. Proc Natl Acad Sci U S A 75(4):1929–1933

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hu R, Wallace J, Dahlem TJ, Grunwald DJ, O’Connell RM (2013) Targeting human microRNA genes using engineered Tal-effector nucleases (TALENs). PLoS One 8(5):e63074

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hummel AW, Doyle EL, Bogdanove AJ (2012) Addition of transcription activator-like effector binding sites to a pathogen strain-specific rice bacterial blight resistance gene makes it effective against additional strains and against bacterial leaf streak. New Phytol 195(4):883–893

    Article  PubMed  CAS  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  PubMed  CAS  Google Scholar 

  • Judelson HS, Tyler BM, Michelmore RW (1991) Transformation of the oomycete pathogen, Phytophthora infestans. Mol Plant Microbe Interact 4(6):602–607

    Article  PubMed  CAS  Google Scholar 

  • Kamoun S (2003) Molecular genetics of pathogenic oomycetes. Eukaryot Cell 2(2):191–199

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kim HJ, Lee HJ, Kim H, Cho SW, Kim JS (2009) Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res 19(7):1279–1288

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kim Y, Kweon J, Kim A, Chon JK, Yoo JY, Kim HJ et al (2013) A library of TAL effector nucleases spanning the human genome. Nat Biotechnol 31(3):251–258

    Article  PubMed  CAS  Google Scholar 

  • Klug A (2010) The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu Rev Biochem 79:213–231

    Article  PubMed  CAS  Google Scholar 

  • Lee CM, Flynn R, Hollywood JA, Scallan MF, Harrison PT (2012) Correction of the DeltaF508 mutation in the cystic fibrosis transmembrane conductance regulator gene by Zinc-Finger Nuclease homology-directed repair. Biores Open Access 1(3):99–108

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li T, Yang B (2013) TAL effector nuclease (TALEN) engineering. Methods Mol Biol 978:63–72

    Article  PubMed  CAS  Google Scholar 

  • Li T, Huang S, Zhao X, Wright DA, Carpenter S, Spalding MH et al (2011) Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res 39(14):6315–6325

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu J, Gaj T, Patterson JT, Sirk SJ, Barbas Iii CF (2014) Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering. PLoS One 9(1):e85755

    Article  PubMed  PubMed Central  Google Scholar 

  • Maeder ML, Linder SJ, Reyon D, Angstman JF, Fu Y, Sander JD et al (2013) Robust, synergistic regulation of human gene expression using TALE activators. Nat Methods 10(3):243–245

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mahfouz MM, Li L, Piatek M, Fang X, Mansour H, Bangarusamy DK et al (2012) Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein. Plant Mol Biol 78(3):311–321

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL (2012) The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335(6069):716–719

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Malardier L, Daboussi MJ, Julien J, Roussel F, Scazzocchio C, Brygoo Y (1989) Cloning of the nitrate reductase gene (niaD) of Aspergillus nidulans and its use for transformation of Fusarium oxysporum. Gene 78(1):147–156

    Article  PubMed  CAS  Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE et al (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I et al (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25(7):778–785

    Article  PubMed  CAS  Google Scholar 

  • Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29(2):143–148

    Article  PubMed  CAS  Google Scholar 

  • Mort-Bontemps M, Fevre M (1997) Transformation of the oomycete Saprolegnia monoica to hygromycin-B resistance. Curr Genet 31(3):272–275

    Article  PubMed  CAS  Google Scholar 

  • Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326(5959):1501

    Article  PubMed  CAS  Google Scholar 

  • Oleykowski CA, Bronson Mullins CR, Godwin AK, Yeung AT (1998) Mutation detection using a novel plant endonuclease. Nucleic Acids Res 26(20):4597–4602

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Olmedo-Monfil V, Cortés-Penagos C, Herrera-Estrella A (2004) Three decades of fungal transformation. In: Balbás P, Lorence A (eds) Recombinant gene expression. Methods in molecular biology, vol 267. Humana Press, Totowa, pp 297–313

    Chapter  Google Scholar 

  • Orr-Weaver TL, Szostak JW, Rothstein RJ (1981) Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci U S A 78(10):6354–6358

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Orr-Weaver TL, Szostak JW, Rothstein RJ (1983) Genetic applications of yeast transformation with linear and gapped plasmids. Methods Enzymol 101:228–245

    Article  PubMed  CAS  Google Scholar 

  • Pabo CO, Peisach E, Grant RA (2001) Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem 70:313–340

    Article  PubMed  CAS  Google Scholar 

  • Partida-Martinez LP, Monajembashi S, Greulich KO, Hertweck C (2007) Endosymbiont-dependent host reproduction maintains bacterial-fungal mutualism. Curr Biol 17(9):773–777

    Article  PubMed  CAS  Google Scholar 

  • Perez-Pinera P, Ousterout DG, Brunger JM, Farin AM, Glass KA, Guilak F et al (2013) Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nat Methods 10(3):239–242

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Piganeau M, Ghezraoui H, De Cian A, Guittat L, Tomishima M, Perrouault L et al (2013) Cancer translocations in human cells induced by zinc finger and TALE nucleases. Genome Res 23(7):1182–1193

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Politz MC, Copeland MF, Pfleger BF (2013) Artificial repressors for controlling gene expression in bacteria. Chem Commun (Camb) 49(39):4325–4327

    Article  CAS  Google Scholar 

  • Porteus MH (2006) Mammalian gene targeting with designed zinc finger nucleases. Mol Ther 13(2):438–446

    Article  PubMed  CAS  Google Scholar 

  • Porteus M (2007) Using homologous recombination to manipulate the genome of human somatic cells. Biotechnol Genet Eng Rev 24:195–212

    Article  PubMed  CAS  Google Scholar 

  • Porteus MH, Baltimore D (2003) Chimeric nucleases stimulate gene targeting in human cells. Science 300(5620):763

    Article  PubMed  Google Scholar 

  • Pruett-Miller SM, Reading DW, Porter SN, Porteus MH (2009) Attenuation of zinc finger nuclease toxicity by small-molecule regulation of protein levels. PLoS Genet 5(2):e1000376

    Article  PubMed  PubMed Central  Google Scholar 

  • Puchta H, Dujon B, Hohn B (1993) Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res 21(22):5034–5040

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK (2012) FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 30(5):460–465

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Robinson M, Sharon A (1999) Transformation of the bioherbicide Colletotrichum gloeosporioides f. sp. Aeschynomene By electroporation of germinated conidia. Curr Genet 36(1–2):98–104

    Article  PubMed  CAS  Google Scholar 

  • Rose M, Winston F (1984) Identification of a Ty insertion within the coding sequence of the S. cerevisiae URA3 gene. Mol Gen Genet 193(3):557–560

    Article  PubMed  CAS  Google Scholar 

  • Rothstein RJ (1983) One-step gene disruption in yeast. Methods Enzymol 101:202–211

    Article  PubMed  CAS  Google Scholar 

  • Rouet P, Smih F, Jasin M (1994) Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci U S A 91(13):6064–6068

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ru R, Yao Y, Yu S, Yin B, Xu W, Zhao S et al (2013) Targeted genome engineering in human induced pluripotent stem cells by penetrating TALENs. Cell Regen 2(1):1–8

    Article  Google Scholar 

  • Ruiz-Diez B (2002) Strategies for the transformation of filamentous fungi. J Appl Microbiol 92(2):189–195

    Article  PubMed  CAS  Google Scholar 

  • San Filippo J, Sung P, Klein H (2008) Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77:229–257

    Article  PubMed  CAS  Google Scholar 

  • Sander JD, Joung JK (2014) CRISPR/Cas system for editing, regulating and targeting. Nat Biotechnol 32:347–355

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schaefer DG, Zryd JP (1997) Efficient gene targeting in the moss Physcomitrella patens. Plant J 11(6):1195–1206

    Article  PubMed  CAS  Google Scholar 

  • Schmid-Burgk JL, Schmidt T, Kaiser V, Honing K, Hornung V (2013) A ligation-independent cloning technique for high-throughput assembly of transcription activator-like effector genes. Nat Biotechnol 31(1):76–81

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Scholze H, Boch J (2011) TAL effectors are remote controls for gene activation. Curr Opin Microbiol 14(1):47–53

    Article  PubMed  CAS  Google Scholar 

  • Segal DJ, Carroll D (1995) Endonuclease-induced, targeted homologous extrachromosomal recombination in Xenopus oocytes. Proc Natl Acad Sci U S A 92(3):806–810

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sizova I, Greiner A, Awasthi M, Kateriya S, Hegemann P (2013) Nuclear gene targeting in Chlamydomonas using engineered zinc-finger nucleases. Plant J 73(5):873–882

    Article  PubMed  CAS  Google Scholar 

  • Stoddard BL (2011) Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure 19(1):7–15

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Szczepek M, Brondani V, Buchel J, Serrano L, Segal DJ, Cathomen T (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25(7):786–793

    Article  PubMed  CAS  Google Scholar 

  • Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) The double-strand-break repair model for recombination. Cell 33(1):25–35

    Article  PubMed  CAS  Google Scholar 

  • Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK et al (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459(7245):442–445

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Umezu K, Amaya T, Yoshimoto A, Tomita K (1971) Purification and properties of orotidine-5′-phosphate pyrophosphorylase and orotidine-5′-phosphate decarboxylase from baker’s yeast. J Biochem 70(2):249–262

    PubMed  CAS  Google Scholar 

  • Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S et al (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435(7042):646–651

    Article  PubMed  CAS  Google Scholar 

  • Utermark J, Karlovsky P (2008) Genetic transformation of filamentous fungi by Agrobacterium tumefaciens. Protocol Exchange; doi:10.1038/nprot.2008.83

  • Vieira AL, Camilo CM (2011) Agrobacterium tumefaciens—mediated transformation of the aquatic fungus Blastocladiella emersonii. Fungal Genet Biol 48(8):806–811

    Article  PubMed  CAS  Google Scholar 

  • Wei C, Liu J, Yu Z, Zhang B, Gao G, Jiao R (2013) TALEN or Cas9—rapid, efficient and specific choices for genome modifications. J Genet Genomics 40(6):281–289

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Zhang F, Li X, Baller JA, Qi Y, Starker CG et al (2013) Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol 161(1):20–27

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work on TALEN technology development and application in the Yang lab and the Spalding lab have been funded by several funding agencies. The authors wish to acknowledge the US National Science Foundation (Award number 1238189 to B.Y. and MCB-0952323 to M.H.S.) and the US Department of Energy’s Advanced Research Projects Agency-Energy Program (DEAR0000010 to M.H.S.) and Office of Science, Basic Energy Science Division. (DE-FG02-12ER16335 to M.H.S.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, T., Wright, D.A., Spalding, M.H., Yang, B. (2015). TALEN-Based Genome Editing in Yeast. In: van den Berg, M., Maruthachalam, K. (eds) Genetic Transformation Systems in Fungi, Volume 1. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-10142-2_27

Download citation

Publish with us

Policies and ethics