Skip to main content

Cryptographic Voting — A Gentle Introduction

  • Chapter
Foundations of Security Analysis and Design VII (FOSAD 2013, FOSAD 2012)

Abstract

These lecture notes survey some of the main ideas and techniques used in cryptographic voting systems. The write-up is geared towards readers with little knowledge of cryptography and it focuses on the broad principles that guide the design and analysis of cryptographic systems, especially the need for properly designed security models.

We use a system proposed by Fujioka, Okamoto and Ohta as starting example to introduce some basic building blocks and desirable security properties. We then slowly build towards a comprehensive description of the Helios voting system, one of the few systems deployed in practice and briefly discuss a few of its security properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Transactions on Information Theory 22(6), 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chaum, D.: Security without Identification: Transaction Systems to make Big Brother obsolete. Communications of the ACM 28(10) (October 1985)

    Google Scholar 

  4. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory 31, 469–472 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

  6. Schnorr, C.P.: Efficient signature generation for smart cards. Journal of Cryptology 4, 161–174 (1991)

    Article  MATH  Google Scholar 

  7. Chaum, D., Pedersen, T.P.: Wallet Databases with Observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  8. Fujioka, A., Okamoto, T., Ohta, K.: A Practical Secret Voting Scheme for Large Scale Elections. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 244–251. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  9. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing Efficient Protocols. In: Proceedings of the 1st ACM Conference on Computer and Communications Security (CCS 1993), pp. 62–73 (1993)

    Google Scholar 

  10. Cramer, R.: Modular Design of Secure yet Practical Cryptographic Protocols. PhD thesis, University of Amsterdam (1996)

    Google Scholar 

  11. Shoup, V., Gennaro, R.: Securing Threshold Cryptosystems against Chosen Ciphertext Attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  12. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  13. Bellare, M., Sahai, A.: Non-Malleable Encryption: Equivalence between Two Notions, and an Indisinguishability-Based Characterization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 519–536. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  14. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The One-More-RSA-Inversion Problem and the Security of Chaum’s Blind Signature Scheme. J. of Cryptology 16(3), 185–215 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Bernhard, D., Cortier, V., Pereira, O., Smyth, B., Warinschi, B.: Adapting Helios for Provable Ballot Privacy. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 335–354. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Schröder, D., Unruh, D.: Security of Blind Signatures Revisited. Eprint, report 2011/316 (2011)

    Google Scholar 

  18. Küsters, R., Truderung, T., Vogt, A.: Verifiability, Privacy, and Coercion-Resistance: New Insights from a Case Study. In: IEEE Symposium on Security and Privacy (S&P 2011). IEEE Computer Society (2011)

    Google Scholar 

  19. Bernhard, D., Pereira, O., Warinschi, B.: On Necessary and Sufficient Conditions for Private Ballot Submission. Eprint, http://eprint.iacr.org/2012/236

  20. Bernhard, D., Pereira, O., Warinschi, B.: How Not to Prove Yourself: Pitfalls of the Fiat-Shamir Heuristic and Applications to Helios. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 626–643. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  21. Smyth, B., Bernhard, D.: Ballot secrecy and ballot independence coincide. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 463–480. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  22. Cortier, V., Smyth, B.: Attacking and fixing Helios: An analysis of ballot secrecy. Journal of Computer Security 21(1), 89–148 (2013)

    Article  Google Scholar 

  23. Bernhard, D.: Zero-Knowledge Proofs in Theory and Practice. PhD thesis, University of Bristol (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bernhard, D., Warinschi, B. (2014). Cryptographic Voting — A Gentle Introduction. In: Aldini, A., Lopez, J., Martinelli, F. (eds) Foundations of Security Analysis and Design VII. FOSAD FOSAD 2013 2012. Lecture Notes in Computer Science, vol 8604. Springer, Cham. https://doi.org/10.1007/978-3-319-10082-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10082-1_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10081-4

  • Online ISBN: 978-3-319-10082-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics