Skip to main content

Abduction in Argumentation Frameworks and Its Use in Debate Games

  • Conference paper
  • First Online:
New Frontiers in Artificial Intelligence (JSAI-isAI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8417))

Included in the following conference series:

Abstract

This paper studies an abduction problem in formal argumentation frameworks. Given an argument, an agent verifies whether the argument is justified or not in its argumentation framework. If the argument is not justified, the agent seeks conditions to explain the argument in its argumentation framework. We formulate such abductive reasoning in argumentation semantics and provide its computation in logic programming. Next we apply abduction in argumentation frameworks to reasoning by players in debate games. In debate games, two players have their own argumentation frameworks and each player builds claims to refute the opponent. A player may provide false or inaccurate arguments as a tactic to win the game. We show that abduction is used not only for seeking counter-claims but also for building dishonest claims in debate games.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A reviewer comments that “an argument \(A\) attacking itself is a very natural explanation for the observation that there is evidence against \(A\), i.e. that \(A\) is out.” However, \(A\)’s attacking itself does not explain that “\(A\) is out” but explains that “\(A\) is not in.” In fact, \(A\) is labelled \(\mathtt{undec}\) in \(AF=(\{A\},\{(A,A)\})\) under the complete, semi-stable, grounded and preferred semantics. We exclude such “undecided” observations. (\(AF\) has no stable labelling.)

  2. 2.

    We refer the readers to the references in [11] for the precise definition of each semantics.

  3. 3.

    We use the notion of (dis)honest claims based on credulous justification under the complete labelling in [26], while alternative definitions are considered based on skeptical justification or different labellings.

References

  1. Amgoud, L., Dimopoulos, Y., Moraitis, P.: A unified and general framework for argumentation-based negotiation. In: Proceedings of the AAMAS-07, pp. 1018–1025 (2007)

    Google Scholar 

  2. Baroni, P., Giacomin, M.: Semantics of abstract argument systems. In: Rahwan, I., Simari, G.R., et al. (eds.) Argumentation in Artificial Intelligence, pp. 25–44. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Baumann, R., Brewka, G.: Expanding argumentation frameworks: enforcing and monotonicity results. In: Proceedings of the 3rd COMMA. Frontiers in AI, vol. 216, pp. 75–86. IOS Press, Amsterdam (2010)

    Google Scholar 

  4. Baumann, R.: What does it take to enforce an argument? Minimal change in abstract argumentation. In: Proceedings of the 20th European Conference on Artificial Intelligence, pp. 127–132. IOS Press, Amsterdam (2012)

    Google Scholar 

  5. Bex, F.J., Prakken, H., Verheij, B.: Formalising argumentation story-based analysis of evidence. In: Proceedings of the 11th International Conference on Artificial Intelligence and Law, pp. 1–10 (2007)

    Google Scholar 

  6. Bex, F.J., Prakken, H.: Investigating stories in a formal dialogue game. In: Proceedings of the 2nd International Conference on Computational Models of Argument, pp. 73–84. IOS Press, Amsterdam (2008)

    Google Scholar 

  7. Boella, G., Kaci, S., van der Torre, L.: Dynamics in argumentation with single extensions: attack refinement and the grounded extension. In: Proceedings of the AAMAS-09, pp. 1213–1214 (2009)

    Google Scholar 

  8. Boella, G., Kaci, S., van der Torre, L.: Dynamics in argumentation with single extensions: abstraction principles and the grounded extension. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS (LNAI), vol. 5590, pp. 107–118. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract, argumentation-theoretic approach to default reasoning. Artif. Intell. 93, 63–101 (1997)

    Article  MathSciNet  Google Scholar 

  10. Caminada, M., Gabbay, D.M.: A logical account of formal argumentation. Stud. Log. 93, 109–145 (2009)

    Article  MathSciNet  Google Scholar 

  11. Caminada, M., Sá, S., Alcântara, J.: On the equivalence between logic programming semantics and argumentation semantics. Technical report ABDN-CS-13-01, University of Aberdeen, 2013. A shorter version in: van der Gaag, L.C. (ed.) ECSQARU 2013. LNCS (LNAI), vol. 7958, pp. 97–108. Springer, Heidelberg (2013)

    Google Scholar 

  12. Cayrol, C., Dupin de Saint-Cyr, F., Lagasquie-Schiex, M.-C.: Change in abstract argumentation frameworks: adding an argument. J. Artif. Intell. Res. 38, 49–84 (2010)

    Article  MathSciNet  Google Scholar 

  13. Dung, P.M.: Negation as hypothesis: an abductive foundation for logic programming. In: Proceedings of the ICLP, pp. 3–17. MIT Press, Cambridge (1991)

    Google Scholar 

  14. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and \(n\)-person games. Artif. Intell. 77, 321–357 (1995)

    Article  MathSciNet  Google Scholar 

  15. Dung, P.M., Kowalski, R.A., Toni, F.: Assumption-based argumentation. In: Rahwan, I., Simari, G.R. (eds.) Argumentation in Artificial Intelligence, pp. 199–218. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Dvořák, W., Woltran, S.: On the intertranslatability of argumentation semantics. J. Artif. Intell. Res. 41, 445–475 (2011)

    Article  MathSciNet  Google Scholar 

  17. Hughes, W.: Critical Thinking: An Introduction to the Basic Skills. Broadview Press, Peterborough (1992)

    Google Scholar 

  18. Inoue, K., Sakama, C.: Abductive framework for nonmonotonic theory change. In: Proceedings of the IJCAI-95, pp. 204–210 (1995)

    Google Scholar 

  19. Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive logic programming. J. Log. Comput. 2(6), 719–770 (1992)

    Article  MathSciNet  Google Scholar 

  20. Kakas, A.C., Moraitis, P.: Argumentative agent deliberation, roles and context. Electr. Notes Theor. Comput. Sci. 70, 39–53 (2002)

    Article  Google Scholar 

  21. Kakas, A.C., Moraitis, P.: Adaptive agent negotiation via argumentation. In: Proceedings of the AAMAS-06, pp. 384–391 (2006)

    Google Scholar 

  22. Mayes, G.R.: Argument-explanation complementarity and the structure of informal reasoning. Informal Log. 30, 92–111 (2010)

    Article  Google Scholar 

  23. Rahwan, I., Larson, K., Tohmé, F.: A characterisation of strategy-proofness for grounded argumentation semantics. In: Proceedings of the IJCAI-09, pp. 251–256 (2009)

    Google Scholar 

  24. Rotstein, N.D., Moguillansky, M.O., Falappa, M.A., García, A.J., Simari, G.R.: Argument theory change: revision upon warrant. In: Proceedings of the 2nd COMMA, pp. 336–347. IOS Press, Amsterdam (2008)

    Google Scholar 

  25. Sakama, C.: Dishonest reasoning by abduction. In: Proceedings of the IJCAI-11, pp. 1063–1068 (2011)

    Google Scholar 

  26. Sakama, C.: Dishonest arguments in debate games. In: Proceedings of the 4th International Conference on Computational Models of Argument. Frontiers in AI and Applications, vol. 245, pp. 177–184. IOS Press, Amsterdam (2012)

    Google Scholar 

  27. Schopenhauer, A.: The Art of Controversy. Originally published in 1896 and is translated by T. Bailey Saunders. Cosimo Classics, New York (2007)

    Google Scholar 

  28. Šešelja, D., Straßer, C.: Abstract argumentation and explanation applied to scientific debates. Synthese 190(12), 2195–2217 (2013)

    Article  MathSciNet  Google Scholar 

  29. Wakaki, T., Nitta, K., Sawamura, H.: Computing abductive argumentation in answer set programming. In: McBurney, P., Rahwan, I., Parsons, S., Maudet, N. (eds.) ArgMAS 2009. LNCS (LNAI), vol. 6057, pp. 195–215. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  30. Wu, Y., Caminada, M., Gabbay, D.M.: Complete extensions in argumentation coincides with 3-valued stable models in logic programming. Stud. Logica. 93(2–3), 383–403 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiaki Sakama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Sakama, C. (2014). Abduction in Argumentation Frameworks and Its Use in Debate Games. In: Nakano, Y., Satoh, K., Bekki, D. (eds) New Frontiers in Artificial Intelligence. JSAI-isAI 2013. Lecture Notes in Computer Science(), vol 8417. Springer, Cham. https://doi.org/10.1007/978-3-319-10061-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10061-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10060-9

  • Online ISBN: 978-3-319-10061-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics