Skip to main content

Local BRST Cohomology for AKSZ Field Theories: A Global Approach

  • Chapter
  • First Online:
Mathematical Aspects of Quantum Field Theories

Part of the book series: Mathematical Physics Studies ((MPST))

  • 2775 Accesses

Abstract

We study the Lagrangian antifield BRST formalism, formulated in terms of exterior horizontal forms on the infinite order jet space of graded fields for topological field theories associated to \(Q\)-bundles. In the case of a trivial \(Q\)-bundle with a flat fiber and arbitrary base, we prove that the BRST cohomology are isomorphic to the cohomology of the target space differential “twisted” by the de Rham cohomology of the base manifold. This generalizes the local result of G. Barnich and M. Grigoriev, computed for a flat base manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Hereafter one has \(x_{\scriptscriptstyle l}=\pi _{\scriptscriptstyle k,l} (x_{k})\) for all \(k\ge l\) and \(x=\pi _{\scriptscriptstyle k} (x_{k})\) for all \(k\ge 0\), unless the contrary is expressed.

  2. 2.

    Direct limit of differential forms and embeddings induced by the projections \(\pi \) and \(\pi _{k+1,k}\).

  3. 3.

    It is based on the fact that jet bundles \(\mathrm {J}^{k+1}(\pi )\rightarrow \mathrm {J}^{k}(\pi )\) are affine.

  4. 4.

    Symmetric powers of the dual bundle.

  5. 5.

    The bifunctors \(\mathrm {Hom}\) and \(\otimes \) are defined over \(\mathcal{O}_X\).

  6. 6.

    Geometrically it means that those sections are tangent to the \(Q\)-stucture on the total space.

References

  1. M. Alexandrov, M. Kontsevich, A. Schwartz, O. Zaboronsky, The geometry of the master equation and topological quantum field theory. Int. J. Mod. Phys. A12, 1405–1430 (1997)

    Article  ADS  Google Scholar 

  2. G. Barnich, Classical and quantum aspects of the extended antifield formalism, These d’agregation ULB (June 2000), in Proceedings of the Spring School “QFT and Hamiltonian Systems”, Calimanesti, Romania, 2–7 May 2000

    Google Scholar 

  3. G. Barnich, F. Brandt, M. Henneaux, Local BRST cohomology in the antifield formalism. I. General theorems. Comm. Math. Phys. 174(1), 57–91 (1995)

    Google Scholar 

  4. G. Barnich, F. Brandt, M. Henneaux, Local BRST cohomology in gauge theories. Phys. Rep. 338(5), 439–569 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. G. Barnich, M. Grigoriev, Poincaré lemma for sigma models of AKSZ type. J. Geom. Phys. 61(3), 663–674 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. A. Beilinson, V. Drinfeld, Chiral Algebras. Amer. Math. Society, (2004)

    Google Scholar 

  7. A.V. Bocharov, V.N. Chetverikov, S.V. Duzhin, N.G. Khor’kova, I.S. Krasil’shchik, A.V. Samokhin, Y.N. Torkhov, A.M. Verbovetsky, A.M. Vinogradov. Symmetries and conservation laws for differential equations of mathematical physics. Translations of Mathematical Monographs, Amer. Math. Soc., 182, Providence (1999)

    Google Scholar 

  8. M. Bojowald, A. Kotov, T. Strobl, Lie algebroid morphisms, Poisson Sigma Models, and off-shell closed gauge symmetries. J. Geom. Phys. 54, 400–426 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  9. G. Bonavolontà, A. Kotov, On the space of super maps between smooth super manifolds. http://arxiv.org/pdf/1304.0394.pdf

  10. G. Bonavolontà, A. Kotov, Local BV cohomology for AKSZ field theories: a global approach II, (In preparation)

    Google Scholar 

  11. P. Deligne, J. W. Morgan, Notes on supersymmetry (following Joseph Bernstein). Quantum fields and strings: a course for mathematicians. Vol. 1. Amer. Math. Soc., Providence (1999)

    Google Scholar 

  12. G. Giacchetta, L. Mangiarotti, G. Sardanashvily, Global calculus in local BRST cohomology. http://arxiv.org/pdf/hep-th/0005023.pdf

  13. M. Henneaux, C. Teitelboim, Quantization of Gauge Systems (University of Princeton, Princeton, 1992)

    MATH  Google Scholar 

  14. A. Kotov, T. Srobl, Characteristic classes associated to Q-bundles, to appear in Int. J. Geom. Methods Mod. Phys. http://arxiv.org/pdf/0711.4106

  15. A. Kotov, T. Srobl, Generalizing geometry–algebroids and sigma models. Handbook of pseudo-Riemannian geometry and supersymmetry, 16 (IRMA Lect. Math. Theor. Phys., Eur. Math. Soc., Zürich, 2010), pp. 209–262

    Google Scholar 

  16. J. Krasil’shchik, A. Verbovetsky, Homological methods in equations of mathematical physics. http://arxiv.org/pdf/math/9808130

  17. D. Quillen, Formal properties of over-determined systems of linear partial differential equations. Ph.D. thesis, Harvard University (1964)

    Google Scholar 

  18. J. Rotman, An Introduction to Homological Algebra (Springer, New York, 2009)

    Book  MATH  Google Scholar 

  19. M. Schlessinger, J. Stasheff, Deformation theory and rational homotopy type (1979). http://arxiv.org/abs/1211.1647

  20. D.C. Spencer, Overdetermined systems of linear partial differential equations. Bull. Amer. Math. Soc. 75, 179–239 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  21. F. Takens, A global version of the inverse problem of the calculus of variations. J. Differential Geometry 14, 543–562 (1979)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Bonavolontà .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bonavolontà, G., Kotov, A. (2015). Local BRST Cohomology for AKSZ Field Theories: A Global Approach. In: Calaque, D., Strobl, T. (eds) Mathematical Aspects of Quantum Field Theories. Mathematical Physics Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-09949-1_10

Download citation

Publish with us

Policies and ethics