Skip to main content

Cooperation among Non-identical Oscillators Connected in Different Topologies

  • Conference paper
ICT Innovations 2014 (ICT Innovations 2014)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 311))

Included in the following conference series:

  • 915 Accesses

Abstract

Various forms of oscillatory networks exist in our surrounding from neural cells to laser arrays. In many of these networks the nodes can go through a transient process of interaction and start oscillating in synchrony. Each of these nodes is characterized by its internal dynamics and changes its state accordingly. Using several forms of interactions, we numerically examine how the network dynamics is affected by network topology and potential random disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  2. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: Structure and dynamics. Phys. Rep. 424(4-5), 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  3. Coutinho, B.C., Goltsev, A.V., Dorogovtsev, S.N., Mendes, J.F.F.: Kuramoto model with frequency-degree correlations on complex networks. Phys. Rev. E 8(3), 32106 (2013)

    Article  Google Scholar 

  4. Daido, H.: Order function and macroscopic mutual entrainment in uniformly coupled limit-cycle oscillators. Prog. Theor. Phys. 88(6), 1213–1218 (1992)

    Article  Google Scholar 

  5. Daido, H.: Quasientrainment and slow relaxation in a population of oscillators with random and frustrated interactions. Phys. Rev. Lett. 68(7), 1073–1076 (1992)

    Article  Google Scholar 

  6. Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci. 5, 17–61 (1960)

    MATH  Google Scholar 

  7. Gómez-Gardeñes, J., Gómez, S., Arenas, A., Moreno, Y.: Explosive synchronization transitions in scale-free networks. Phys. Rev. Lett. 106(12), 128701 (2011)

    Article  Google Scholar 

  8. Ichonmiya, T.: Frequency synchronization in a random oscillator network. Phys. Rev. E 70(2), 26116 (2004)

    Article  Google Scholar 

  9. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  10. Mirchev, M.: Cooperative processes in complex networks with imperfections. Ph.D. thesis, Politecnico di Torino, Italy (2014)

    Google Scholar 

  11. Mirchev, M., Basnarkov, L., Corinto, F., Kocarev, L.: Cooperative phenomena in networks of oscillators with non-identical interactions and dynamics. IEEE Trans. Circuits Syst. I, Reg. Papers 61(3), 811–819 (2014)

    Article  Google Scholar 

  12. Moreno, Y., Pacheco, A.F.: Synchronization of kuramoto oscillators in scale-free networks. Europhys. Lett. 68(4), 603–609 (2004)

    Article  Google Scholar 

  13. Restrepo, J.G., Ott, E., Hunt, B.R.: Onset of synchronization in large networks of coupled oscillators. Phys. Rev. E 71(3), 036151 (2005)

    Google Scholar 

  14. Sakaguchi, H., Kuramoto, Y.: A soluble active rotator model showing phase transitions via mutual entrainment. Prog. Theor. Phys. 76(3), 576–581 (1986)

    Article  MathSciNet  Google Scholar 

  15. Wiener, N.: Nonlinear Problems in Random Theory. MIT Press, Cambridge (1958)

    MATH  Google Scholar 

  16. Winfree, A.T.: Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16(1), 15–42 (1967)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Mirchev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mirchev, M., Basnarkov, L., Kocarev, L. (2015). Cooperation among Non-identical Oscillators Connected in Different Topologies. In: Bogdanova, A., Gjorgjevikj, D. (eds) ICT Innovations 2014. ICT Innovations 2014. Advances in Intelligent Systems and Computing, vol 311. Springer, Cham. https://doi.org/10.1007/978-3-319-09879-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09879-1_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09878-4

  • Online ISBN: 978-3-319-09879-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics