Skip to main content

On the Razi Acceleration

  • Chapter
  • First Online:
Nonlinear Approaches in Engineering Applications

Abstract

The Razi acceleration is an acceleration term that appears as a result of applying the vector derivative transformation formula in a three relatively rotating coordinate frames system. The Razi term, \((_{A}^{C}\boldsymbol{\omega }_{B} \times _{B}^{C}\boldsymbol{\omega }_{C}) \times ^{C}\mathbf{r}\) appears when the first and the second derivatives of a position vector are taken from two different coordinate frames. This is technically called mixed double derivative transformation. The resulting expression is distinguishable from other types of inertial accelerations such as the Coriolis acceleration \(2_{A}^{C}\boldsymbol{\omega }_{C} \times _{C}^{C}\mathbf{v}\) and the centripetal acceleration \(_{A}^{C}\boldsymbol{\omega }_{C} \times (_{A}^{C}\boldsymbol{\omega }_{C} \times ^{C}\mathbf{r})\). However, the mixed double derivative expression does not give clear dynamical interpretation of the Razi acceleration. This work presents the finding that the Razi term also appears in rigid body rotation about a point. We show that the Razi acceleration has the property of an inertial acceleration, in which it acts on a body in compound rotation motion. This finding shows that the Razi term is another acceleration, along with the Coriolis, centripetal, and tangential accelerations, that appears due to the relative motion of rotating referential coordinate frames.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baruh H (1999) Analytical dynamics. WCB/McGraw-Hill, Boston

    Google Scholar 

  • Jazar RN (2012) Derivative and coordinate frames Nonlinear Eng 1(1):25–34

    Google Scholar 

  • Jazar RN (2011) Advanced dynamics: rigid body, multibody, and aerospace applications. Wiley, Hoboken, pp 858–864

    Book  Google Scholar 

  • Kane TR, Likins PW, Levinson DA (1983) Spacecraft dynamics. McGraw-Hill, New York, pp 1–90

    Google Scholar 

  • Kasdin NJ, Paley DA (2011) Engineering dynamics: a comprehensive introduction. Princeton University Press, Princeton

    Google Scholar 

  • Koetsier T (2007) Euler and kinematics. Stud Hist Philos Math 5:167–194

    Article  Google Scholar 

  • Rao A (2006) Dynamics of particles and rigid bodies: a systematic approach. Cambridge University Press, Cambridge

    Google Scholar 

  • Tenenbaum RA (2004) Fundamentals of applied dynamics. Springer, New York

    Google Scholar 

  • Van Der Ha JC, Shuster MD (2009) A tutorial on vectors and attitude (Focus on Education). Control Syst IEEE 29(2):94–107

    Article  Google Scholar 

  • Zipfel PH (2000) Modeling and simulation of aerospace vehicle dynamics. AIAA, Virginia

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel M. Trivailo .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Alternative Proof of Derivative Transformation Formula

Angular velocity can be defined in terms of time-derivative of rotation matrix. Consider the two coordinate frames system as shown in Fig. 2.2. The angular velocity of B in relative to G, \(_{G}\boldsymbol{\omega }_{B}\) is written as follows

$$\displaystyle\begin{array}{rcl} _{G}^{G}\boldsymbol{\omega }_{ B}& =& ^{G}\dot{R}_{ B}\,^{G}R_{ B}^{T}\qquad \mbox{ if expressed in $G$} \\ _{G}^{B}\boldsymbol{\omega }_{ B}& =& ^{G}R_{ B}^{T}\,^{G}\dot{R}_{ B}\qquad \mbox{ if expressed in $B$}{}\end{array}$$
(2.52)

To prove Eq. (2.52), we start with the relation between a vector expressed in two arbitrary coordinate frames G and B.

$$\displaystyle{ ^{G}\mathbf{r} = ^{G}R_{ B}\,^{B}\mathbf{r} }$$
(2.53)

Finding the derivative of the G-vector from G, we get

$$\displaystyle{ _{G}^{G}\dot{\mathbf{r}} = ^{G}\dot{R}_{ B}\,^{B}\mathbf{r} = ^{G}\dot{R}_{ B}\,^{G}R_{ B}^{T}\,^{G}\mathbf{r} = _{ G}^{G}\boldsymbol{\omega }_{ B} \times ^{G}\mathbf{r} }$$
(2.54)

Here, it is assumed that the vectorB r is constant in B. If it is not constant, we have to include the simple derivative of the vector in B and rotate it to G

$$\displaystyle{ _{G}^{G}\dot{\mathbf{r}} = ^{G}\dot{R}_{ B}\,^{B}\mathbf{r} + ^{G}R_{ B}\,_{B}^{B}\dot{\mathbf{r}} = _{ G}^{G}\boldsymbol{\omega }_{ B} \times ^{G}\mathbf{r} + _{ B}^{G}\dot{\mathbf{r}} }$$
(2.55)

The angular velocities between two arbitrary frames are equal and oppositely directed given that both are expressed in the same frame

$$\displaystyle{ _{G}\boldsymbol{\omega }_{B} = -_{B}\boldsymbol{\omega }_{G} }$$
(2.56)

Using this angular velocity property, rearranging Eq. (2.54) gives

$$\displaystyle{ _{B}^{G}\dot{\mathbf{r}} = _{ G}^{G}\dot{\mathbf{r}} + _{ B}^{G}\boldsymbol{\omega }_{ G} \times ^{G}\mathbf{r} }$$
(2.57)

Appendix 2: Proof of the Kinematic Chain Rule for Angular Acceleration Vectors

To prove Eq. (2.29), we start with a composition of n angular velocity vectors which are all expressed in an arbitrary frame g.

$$\displaystyle\begin{array}{rcl}{}_{0}^{g}\boldsymbol{\omega }_{ n}& =& \sum \limits _{i=1}^{n}{}_{ i-1}^{\quad g}\boldsymbol{\omega }_{ i} ={}_{0}^{g}\boldsymbol{\omega }_{ 1} +{}_{1}^{g}\boldsymbol{\omega }_{ 2} + \cdots +{}_{n-1}^{\quad g}\boldsymbol{\omega }_{ n} \\ & =&{}^{g}R_{ 1}\,{}_{0}^{1}\boldsymbol{\omega }_{ 1} +{}^{g}R_{ 2}\,{}_{1}^{2}\boldsymbol{\omega }_{ 2} + \cdots +{}^{g}R_{ n}\,{}_{(n-1)}^{\quad n}\boldsymbol{\omega }_{ n}\quad {}\end{array}$$
(2.58)

We use the technique of differentiating from another frame in Appendix 1. Differentiating the angular velocities from an arbitrary frame g gives

$$\displaystyle\begin{array}{rcl} \frac{{}^{g}d} {dt}\sum \limits _{i=1}^{n}{}_{ i-1}^{\quad g}\boldsymbol{\omega }_{ i}& =& \frac{{}^{g}d} {dt}\left ({}^{g}R_{ 1}\,_{0}^{1}\boldsymbol{\omega }_{ 1} + ^{g}R_{ 2}\,_{1}^{2}\boldsymbol{\omega }_{ 2} + \cdots + ^{g}R_{ n}\,_{(n-1)}^{\quad n}\boldsymbol{\omega }_{ n}\right ) \\ & =& ({}^{g}R_{ 1}\,_{0}^{1}\boldsymbol{\alpha }_{ 1} + ^{g}\dot{R}_{ 1}\,_{0}^{1}\boldsymbol{\omega }_{ 1}) + ({}^{g}R_{ 2}\,_{1}^{2}\boldsymbol{\alpha }_{ 2} + ^{g}\dot{R}_{ 2}\,_{1}^{2}\boldsymbol{\omega }_{ 2}) + \cdots \\ & & \cdots + ({}^{g}R_{ n}\,_{(n-1)}^{\quad n}\boldsymbol{\alpha }_{ n} + ^{g}\dot{R}_{ n}\,_{(n-1)}^{\quad n}\boldsymbol{\omega }_{ n}) \\ & =& ({}^{g}R_{ 1}\,_{0}^{1}\boldsymbol{\alpha }_{ 1} + ^{g}\dot{R}_{ 1}\,^{g}R_{ 1}^{T}\,_{ 0}^{g}\boldsymbol{\omega }_{ 1}) + ({}^{g}R_{ 2}\,_{1}^{2}\boldsymbol{\alpha }_{ 2} + ^{g}\dot{R}_{ 2}\,^{g}R_{ 2}^{T}\,_{ 1}^{g}\boldsymbol{\omega }_{ 2}) + \cdots \\ & & \cdots + ({}^{g}R_{ n}\,_{(n-1)}^{\quad n}\boldsymbol{\alpha }_{ n} + ^{g}\dot{R}_{ n}\,^{g}R_{ n}^{T}\,_{ (n-1)}^{\quad g}\boldsymbol{\omega }_{ n}) \\ & =& (_{0}^{g}\boldsymbol{\alpha }_{ 1} + _{g}^{g}\boldsymbol{\omega }_{ 1} \times _{0}^{g}\boldsymbol{\omega }_{ 1}) + (_{1}^{g}\boldsymbol{\alpha }_{ 2}) + _{g}^{g}\boldsymbol{\omega }_{ 2} \times _{1}^{g}\boldsymbol{\omega }_{ 2}) + \cdots \\ & & \cdots + (_{(n-1)}^{\quad g}\boldsymbol{\alpha }_{ n} + _{g}^{g}\boldsymbol{\omega }_{ n} \times _{(n-1)}^{\quad g}\boldsymbol{\omega }_{ n}) {}\end{array}$$
(2.59)

The whole expression can be transformed to any arbitrary frame f by applying the rotation matrix from g to f,f R g .

$$\displaystyle\begin{array}{rcl} \frac{{}^{g}d} {dt}\left (\sum \limits _{i=1}^{n}{}_{ i-1}^{\quad f}\boldsymbol{\omega }_{ i}\right )& =& \left (^{f}R_{ g}\frac{{}^{g}d} {dt}\sum \limits _{i=1}^{n}{}_{ i-1}^{\quad g}\boldsymbol{\omega }_{ i}\right ) \\ & =& \frac{{}^{g}d} {dt}\left (^{f}R_{ g}\sum \limits _{i=1}^{n}{}_{ i-1}^{\quad g}\boldsymbol{\omega }_{ i}\right ) \\ & =& \sum \limits _{i=1}^{n}{}_{ i-1}^{\quad f}\boldsymbol{\alpha }_{ i} + _{g}^{f}\boldsymbol{\omega }_{ i} \times _{i-1}^{\quad f}\boldsymbol{\omega }_{ i}{}\end{array}$$
(2.60)

2.1 Notations

In this article, the following symbols and notations are being used. Lowercase bold letters are used to indicate a vector. Dot accents on a vector indicate that is a time-derivative of the vector.

  • r, v (or \(\dot{\mathbf{r}}\)), and a (or \(\ddot{\mathbf{r}}\)) are the position, velocity, and acceleration vectors

  • \(\boldsymbol{\omega }\) and \(\boldsymbol{\alpha }\) (or \(\dot{\boldsymbol{\omega }}\)) are angular velocity and angular acceleration vectors.

Capital letter A, B, C, and G are used to denote a reference frame. In examples where only B and G are used, the former indicates a rotating, body coordinate frame and the latter indicates the global-fixed, inertial body frame. When a reference frame is introduced, its origin point and three basis vectors are indicated. For example:

$$\displaystyle{ A(O\mathbf{a}_{1}\mathbf{a}_{2}\mathbf{a}_{3})\quad G(OXY Z)\quad B(o\hat{\imath}\hat{\jmath}\hat{k}) }$$

Capital letters R is reserved for rotation matrix and transformation matrix. The right subscript on a rotation matrix indicates its departure frame, and the left superscript indicates its destination frame. For example:

$$\displaystyle{ ^{B}R_{ A} = \mbox{ rotation matrix from frame $A$ to frame $B$} }$$

Left superscript is used to denote the coordinate frame in which the vector is expressed. For example, if a vector r is expressed in an arbitrary coordinate frame A which has the basis vector \((\hat{\imath},\hat{\jmath},\hat{k})\), it is written as

$$\displaystyle\begin{array}{rcl} ^{A}\mathbf{r}& =& r_{ 1}\hat{\imath} + r_{2}\hat{\jmath} + r_{3}\hat{k} {}\\ & =& \mbox{ vector $\mathbf{r}$ expressed in frame $A$} {}\\ \end{array}$$

Left subscript is used to denote the coordinate frame from which the vector is differentiated. For example,

$$\displaystyle\begin{array}{rcl} _{B}^{A}\dot{\mathbf{r}}& =& \frac{{}^{V }d} {dt} {{}^{A}\mathbf{r}} {}\\ & =& \mbox{ vector $\mathbf{r}$ expressed in frame $A$ and differentiated in frame $B$} {}\\ _{BB}^{\quad A}\ddot{\mathbf{r}}& =& \frac{{}^{B}d} {dt} \frac{{}^{B}d} {dt} {{}^{A}\mathbf{r}} {}\\ & =& \mbox{ vector $\mathbf{r}$ expressed in frame $A$ and differentiated twice in frame B}{}\\ \end{array}$$
$$\displaystyle{ _{CB}^{\quad A}\ddot{\mathbf{r}} = \frac{{}^{C}d} {dt} \frac{{}^{B}d} {dt} {{}^{A}\mathbf{r}} }$$
$$\displaystyle\begin{array}{rcl} & =& \mbox{ vector $\mathbf{r}$ expressed in frame $A$ and differentiated in frame B} {}\\ & & \mbox{ and differentiated again in frame $C$} {}\\ \end{array}$$

Right subscript is used to denote the coordinate frame to which the vector is referred, and left subscript is the coordinate frame to which it is related. For example, the angular velocity of frame A with respect to frame B is written as

$$\displaystyle{ _{B}\boldsymbol{\omega }_{A} = \mbox{ angular velocity vector of $A$ with respect to $B$} }$$

If the coordinate frame in which the angular velocity is expressed is specified

$$\displaystyle\begin{array}{rcl} _{B}^{C}\boldsymbol{\omega }_{ A}& =& \mbox{ angular velocity vector of $A$ with respect to $B$} {}\\ & & \mbox{ expressed in $C$} {}\\ \end{array}$$

Key Symbols

\(\mathbf{a =}\ddot{\mathbf{r}}\) :

Acceleration vector

\(\mathbf{v =}\dot{\mathbf{r}}\) :

Velocity vector

r :

Displacement vector

α :

Angular acceleration vector

ω :

Angular velocity vector

F :

Force vector

m :

Mass scalar

n :

Number of elements in the set of noninertial coordinate frames

i :

ith element in a set

f, g :

Elements in the set of noninertial coordinate frames

\(\hat{I},\hat{J},\hat{K}\) :

Orthonormal unit vectors of an inertial frame

\(\hat{\imath},\hat{\jmath},\hat{k}\) :

Orthonormal unit vectors of a noninertial frame

O :

Origin point of a coordinate frame

\(\dot{\theta }\) :

Angular speed of body (spin)

\(\dot{\phi }\) :

Angular speed of body (precession)

ψ :

Nutation angle, angle between spin vector and precession vector

R :

Rotation transformation matrix

 □ :

Arbitrary vector

A r :

Vector r expressed in A-frame

\(_{B}^{A}\mathbf{\dot{r}}\) :

Vector \(\dot{\mathbf{r}}\) expressed in A-frame and differentiated in B-frame

\(_{CB}^{\,\,\,\,A}\mathbf{\dot{r}}\) :

Vector \(\ddot{\mathbf{r}}\) expressed in A-frame, first-differentiated in B-frame, and second-differentiated from C-frame

A R B :

Rotation transformation matrix from B-frame to A-frame

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Harithuddin, A.S.M., Trivailo, P.M., Jazar, R.N. (2015). On the Razi Acceleration. In: Dai, L., Jazar, R. (eds) Nonlinear Approaches in Engineering Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-09462-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09462-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09461-8

  • Online ISBN: 978-3-319-09462-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics