Skip to main content

Agricultural Biotechnology for Health and the Environment

  • Chapter
  • First Online:
Biotechnology and Biodiversity

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 4))

Abstract

Due to the social circumstances surrounding agricultural biotechnology, its potential to help achieving environmental improvement and more healthy foodstuffs has not been actualized. With respect to health, biotechnology can improve the micronutrient contents of staple food. It can provide crops with a more balanced amino acid composition and a more healthy fatty acid composition. Toxic and allergenic substances can be removed, and energy density can be reduced in order to lessen the risk of obesity and diabetes. With respect to the environment, cultivars can be developed that require less tilling, thereby bringing down soil erosion and nitrogen leakage. More drought tolerant cultivars will decrease the need for irrigation that is a major cause of environmental problems. Plants with improved nitrogen efficiency will diminish the use of fertilizers, and pesticide resistant crops the use of pesticides. Although by no means a panacea, genetic technology facilitates breeding and widens the scope of what it can achieve, not least in terms of more healthy products and a more environmentally friendly production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beddington J (2010) Food security: contributions from science to a new and greener revolution. Philos Trans R Soc B 365:61–71

    Article  Google Scholar 

  • Berg P, Singer MF (1995) The recombinant DNA controversy: twenty years later. Proc Natl Acad Sci U S A 92:9011–9013

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Berg P, Baltimore D, Boyer HW, Cohen SN, Davis RW, Hogness DS, Nathans D, Roblin R, Watson JD, Weissman S, Zinder ND (1974) Potential biohazards of recombinant DNA molecules. Science 185:303

    Article  CAS  Google Scholar 

  • Best C, Neufingerl N, Del Rosso JM, Transler C, van den Briel T, Osendarp S (2011) Can multi-micronutrient food fortification improve the micronutrient status, growth, health, and cognition of schoolchildren? A systematic review. Nutr Rev 69:186–204

    Article  PubMed  Google Scholar 

  • Bhattacharjee RB, Singh A, Mukhopadhyay SN (2008) Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl Microbiol Biotechnol 80:199–209

    Article  PubMed  CAS  Google Scholar 

  • Bhullar NK, Gruissem W (2013) Nutritional enhancement of rice for human health: the contribution of biotechnology. Biotechnol Adv 31:50–57

    Article  PubMed  CAS  Google Scholar 

  • Butchart SHM, Walpole M, Collen B, van Strien A, Scharlemann JPW, Almond REA, Baillie JEM et al (2010) Global biodiversity: indicators of recent declines. Science 328(5982):1164–1168

    Article  PubMed  CAS  Google Scholar 

  • Cerdeira AL, Duke SO (2006) The current status and environmental impacts of glyphosate-resistant crops: a review. J Environ Qual 35:1633–1658

    Article  PubMed  CAS  Google Scholar 

  • Chassy BM (2004) Nutritional and safety assessments of foods and feeds nutritionally improved through biotechnology: an executive summary. Compr Rev Food Sci Food Saf 3:38–104

    Google Scholar 

  • Cocking EC (2009) The challenge of establishing symbiotic nitrogen fixation in cereals. In: Emerich DW, Krishnan HB (eds) Nitrogen fixation in crop production. American Society of Agronomy, Madison, pp 35–64

    Google Scholar 

  • Downes R (2000) Perennial crops and fodders to complement annual crops and minimise deep drainage. In: Clarke D, Downes R (eds) Opportunities to breed/select/bioengineer plant species to control deep drainage and nutrient leakage. Scoping report July 2000 for the redesigning agriculture for Australian landscapes (RAAL) R & D program. Land and Water Resources Research and Development Corporation, Canberra, pp 29–34

    Google Scholar 

  • Ello-Martin JA, Roe LS, Ledikwe JH, Beach AM, Rolls BJ (2007) Dietary energy density in the treatment of obesity: a year-long trial comparing 2 weight-loss diets. Am J Clin Nutr 85(6):1465–1477

    PubMed  CAS  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G, Hodges M (2011) Respiration and nitrogen assimilation: targeting mitochondria-associated metabolism as a means to enhance nitrogen use efficiency. J Exp Bot 62(4):1467–1482

    Article  PubMed  CAS  Google Scholar 

  • Goldewijk KK (2001) Estimating global land use change over the past 300 years: the HYDE database. Global Biogeochem Cycles 15(2):417–433

    Article  Google Scholar 

  • Hansson SO, Joelsson K (2013) Crop biotechnology for the environment? J Agric Environ Ethics 26:759–770

    Article  Google Scholar 

  • Heathcote AJ, Downing JA (2012) Impacts of eutrophication on carbon burial in freshwater lakes in an intensively agricultural landscape. Ecosystems 15(1):60–70

    Article  CAS  Google Scholar 

  • Hirschi KD (2009) Nutrient biofortification of food crops. Annu Rev Nutr 29:401–421

    Article  PubMed  CAS  Google Scholar 

  • Hooper L, Summerbell CD, Thompson R, Sills D, Roberts FG, Moore H, Smith GD (2012) Reduced or modified dietary fat for preventing cardiovascular disease. Cochrane Libr, Issue 5

    Google Scholar 

  • IAASTD (2008) Agriculture at a crossroads. International assessment of agricultural science and technology for development. Island Press, Washington, DC

    Google Scholar 

  • Izge AU, Dugje IY (2011) Performance of drought tolerant three-way and top cross maize hybrids in Sudan Savanna of North Eastern Nigeria. J Plant Breed Crop Sci 3:269–675

    Google Scholar 

  • James C (2011) Global status of commercialized biotech/GM crops: 2011. ISAAA Briefs No 43, Ithaca

    Google Scholar 

  • James C, Krattiger AF (1996) Global review of the field testing and commercialization of transgenic plants: 1986–1995. The first decade of crop biotechnology. ISAAA Briefs No 1, Ithaca

    Google Scholar 

  • Kouser S, Qaim M (2011) Impact of Bt cotton on pesticide poisoning in smallholder agriculture: a panel data analysis. Ecol Econ 70:2105–2113

    Article  Google Scholar 

  • Krupke CH, Hunt GJ, Eitzer BD, Andino G, Given K (2012) Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS ONE 7(1):e29268. doi:10.1371/journal.pone.0029268

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ledikwe JH, Blanck HM, Khan LK, Serdula MK, Seymour JD, Tohill BC, Rolls BJ (2006) Dietary energy density is associated with energy intake and weight status in US adults. Am J Clin Nutr 83(6):1362–1368

    PubMed  CAS  Google Scholar 

  • Lee S, Jeon US, Lee SJ, Kim Y-K, Persson DP, Husted S, Schjørring JK, Kakei Y, Masuda H, Nishizawa NK, An G (2009) Iron fortification of rice seeds through activation of the nicotianamine synthase gene. Proc Natl Acad Sci U S A 106:22014–22019

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lemaux PG (2008) Genetically engineered plants and foods: a scientist’s analysis of the issues (part I). Annu Rev Plant Biol 59:771–812

    Article  PubMed  CAS  Google Scholar 

  • Lim SS et al (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2224–2260

    Article  PubMed  PubMed Central  Google Scholar 

  • Magaña-Gómez JA, Calderón de la Barca AM (2009) Risk assessment of genetically modified crops for nutrition and health. Nutr Rev 67:1–16

    Article  PubMed  Google Scholar 

  • Mayer JE (2007) Delivering golden rice to developing countries. J AOAC Int 90:1445–1449

    PubMed  CAS  Google Scholar 

  • Mitra A, Chatterjee C, Mandal FB (2011) Synthetic chemical pesticides and their effects on birds. Res J Environ Toxicol 5:81–96

    Article  CAS  Google Scholar 

  • Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48

    Article  PubMed  Google Scholar 

  • Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutritional value of golden rice through increased pro-vitamin A content. Nat Biol 23:482–487

    CAS  Google Scholar 

  • Pimentel D, Patzek TW (2005) Ethanol production using corn, switchgrass, and wood: biodiesel production using soybean and sunflower. Nat Resour Res 14:65–76

    Article  CAS  Google Scholar 

  • Pimm SL, Russell GJ, Gittleman JL, Brooks TM (1995) The future of biodiversity. Science 269:347–350

    Article  PubMed  CAS  Google Scholar 

  • Potrykus I (2010) Regulation must be revolutionized. Nature 466:561

    Article  PubMed  CAS  Google Scholar 

  • Powell K (2007) Functional foods from biotech—an unappetizing prospect? Nat Biotechnol 25:525–531

    Article  PubMed  CAS  Google Scholar 

  • Price SL (1978) The little beasts. Mol Cell Biochem 22:183–192

    Article  PubMed  CAS  Google Scholar 

  • Qaim M (2009) The economics of modified genetically modified crops. Annu Rev Resour Econ 1:665–693

    Article  Google Scholar 

  • Qaim M, Zilberman D (2003) Yield effects of genetically modified crops in developing countries. Science 299:900–902

    Article  PubMed  CAS  Google Scholar 

  • Reeves TG (1997) Apomixis, a research biotechnology for the resource-poor: some ethical and equity considerations. Ethics and equity in conservation and use of genetic resources for sustainable food security. Proceedings of a workshop to develop guidelines for the CGIAR, pp 57–60

    Google Scholar 

  • Risérus U, Willett WC, Hu FB (2009) Dietary fats and prevention of typ 2 Diabetes. Prog Lipid Res 48:44–51

    Article  PubMed  PubMed Central  Google Scholar 

  • Rolls BJ, Roe LS, Meengs JS (2004) Salad and satiety: energy density and portion size of a first-course salad affect energy intake at lunch. J Am Diet Assoc 104(10):1570–1576

    Article  PubMed  Google Scholar 

  • Sarkar A, Aronson KJ, Patil S, Hugar LB, van Loon GW (2012) Emerging health risks associated with modern agriculture practices: a comprehensive study in India. Environ Res 115:37–50

    Article  PubMed  CAS  Google Scholar 

  • Smith JM (2007) Genetic roulette: the documented health risks of genetically engineered foods. Yes! Books, Fairfield

    Google Scholar 

  • Thomson JA, Shepherd DN, Mignouna HD (2010) Developments in agricultural biotechnology in Sub-Saharan Africa. AgBioForum 13(4):314–319. http://www.agbioforum.org

  • UNFCCC (2007) Investment and financial flows to address climate change. United Nations Framework Convention on Climate Change, Bonn.unfccc.int/resource/docs/publications/financial_flows.pdf

    Google Scholar 

  • Wolfenbarger LL, Phifer PR (2000) The ecological risks and benefits of genetically engineered plants. Science 290:2088–2093

    Article  PubMed  CAS  Google Scholar 

  • Yao Z, Zhou Z, Zheng X, Xie B, Liu C, Butterbach-Bahl K, Zhu J (2010) Effects of tillage during the nonwaterlogged period on nitrous oxide and nitric oxide emissions in typical chinese rice-wheat rotation ecosystems. J Geophys Res 115:G01013. doi:10.1029/2009JG001088

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Ove Hansson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hansson, S. (2014). Agricultural Biotechnology for Health and the Environment. In: Ahuja, M., Ramawat, K. (eds) Biotechnology and Biodiversity. Sustainable Development and Biodiversity, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-09381-9_5

Download citation

Publish with us

Policies and ethics