Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 481 Accesses

Abstract

Simulating the effect of clogging requires a detailed representation of the two-phase flow in the riser. This rules out simple models based on energy balance and global approximations such as log mean temperature difference or number of transfer unit. Computational multi-fluid dynamics is becoming increasingly powerful but for now it is still confined to simple geometries and requires long computation times. There is an intermediate approach which allows to take into account implicitly the properties of the two phase flow by locally averaging physical quantities both spatially and temporally. This is the interpenetrating-media paradigm which relies on the two following concepts:

  • both phases are present everywhere with a certain probability, the presence fraction;

  • the interfaces are not described explicitly in the model but are taken into account when averaging.

Direct application of these principles leads to a set of balance equations commonly known as the two-fluids or 6 equations model which are usually closed by empirical laws describing the interfacial exchanges. The model described in this chapter is derived from this general framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bird RB, Stewart WE, Lightfoot EN (2006) Transport phenomena, 2nd edn. Wiley, New York

    Google Scholar 

  • Bouskela D (2003) Bibliothèque Modelica thermohydraulique. Structure et recommandations de conception. Tech. Rep. H-P12-2003-02281, EDF

    Google Scholar 

  • Bouskela D (2012) Site officiel de la bibliothèque ThermoSysPro. http://www.modelica.org/libraries/thermosyspro

  • Collier JG, Thome JR (1996) Convective boiling and condensation. Oxford University Press, Oxford

    Google Scholar 

  • David F, Guelfi A (1999) THYC-ECHANGEUR version 3, application aux généraeurs de vapeur, fiches de qualification—partie 2. Tech. Rep. HT-33/95/017/B, EDF

    Google Scholar 

  • De Crecy F (1985) étude du comportement du secondaire des générateurs de vapeur—Résultats des expériences Patricia GV2. Tech. Rep. TT/SETRE/173, C.E.A.

    Google Scholar 

  • Dymola (2004a): dynamic modeling laboratory user’s manual—Dymola 6 addition (version 6.1). Dynasim AB

    Google Scholar 

  • Dymola (2004b): dynamic modeling laboratory user’s manual (version 5.3a). Dynasim AB

    Google Scholar 

  • El Hefni B, Bouskela D, Lebreton G (2011) Dynamic modelling of a combined cycle power plant with ThermoSysPro. 8th Modelica conference proceedings, Modelica association et Fraunhofer IIS EAS, Dresden, Allemagne, pp 365–375

    Google Scholar 

  • EPRI (2008) ATHOS/SGAP, Version 3.1 Analysis of the thermal hydraulics of a steam generator/steam generator analysis package, version 3.1. Tech. Rep. 1016564, EPRI

    Google Scholar 

  • Ghiaasiaan SM (2008) Two-phase flow, boiling and condensation in conventional and miniature systems. Cambridge University Press. New York

    Google Scholar 

  • Guelfi A, Pitot S (2004) Note de principe THYC version 4.1, partie 1: modélisation. Tech. Rep. H-I84/03/020/A, EDF

    Google Scholar 

  • Hewitt GF (2011) Empirical and phenomenological models for multiphase flows—I. Vertical flows. In: zur (2011)

    Google Scholar 

  • Hibiki T, Ishii M (2003) One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes. Int J Heat Mass Transf 46(25):4935–4948

    Article  MATH  Google Scholar 

  • Idel’cik IE (1969) Memento des Pertes de Charge—Coefficients de Pertes de Charge Singulières et de Pertes de Charge par Frottement. Collection de la Direction des Études d’Électricité de France, Édition Eyrolles, traduit du russe

    Google Scholar 

  • Ishii M, Hibiki T (2006) Thermo-fluid dynamics of two-phase flow. Springer Science, New York

    Google Scholar 

  • Modelica Language Specification (2005)—Version 2.2. Modelica Association

    Google Scholar 

  • Petzold LR (1982) Description of DASSL: a differential/algebraic system solver. Tech. Rep. SAND-82-8637; CONF-820810-21, Sandia National Laboratories, Livermore, CA (USA)

    Google Scholar 

  • Pierotti G (1990) Perte de charge et transfert thermique dans les faisceaux de tubes. Tech. Rep. HT-37/90.16A, EDF

    Google Scholar 

  • Pillet J, Nimambeg N, Pinto C (2010) Résultats des essais monophasiques sur la maquette P2C pour la détermination des pertes de charge induites par le colmatage. Tech. Rep. H-I84-2009-02838, EDF

    Google Scholar 

  • Rohsenow WM, Hartnett JP, Cho YI (eds) (1998) Handbook of Heat Transfer, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Singhal A, Srikantiah G (1991) A review of thermal hydraulic analysis methodology for PWR steam generators and ATHOS3 code applications. Prog Nucl Energy 25(1):7–70

    Article  Google Scholar 

  • Tincq D, David F (1994) THYC-ECHANGEUR version 3, application aux généraeurs de vapeur, fiches de qualification—partie 1. Tech. Rep. HT-33/94/029/A,EDF

    Google Scholar 

  • Yadigaroglu G (2011) Basic models for two-phase flows. In: zur (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Girard .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Girard, S. (2014). Steam Generator Physical Model. In: Physical and Statistical Models for Steam Generator Clogging Diagnosis. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-09321-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09321-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09320-8

  • Online ISBN: 978-3-319-09321-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics