Skip to main content

Pathobiology and Optical Molecular Imaging of Calcific Aortic Valve Disease

  • Chapter
  • First Online:
Cardiovascular Imaging

Abstract

Calcific aortic valve disease (CAVD) is a major contributor to cardiovascular morbidity and mortality, and given its association with age, the prevalence of CAVD is expected to rise with an increase in worldwide life expectancy. Currently, no therapies exist for the treatment or prevention of CAVD. Much of our understanding of the progression of CAVD has originated from preclinical data using optical molecular imaging of animal models. Through these studies we now know that CAVD is an inflammatory disease with a fibrocalcific endpoint. In this chapter, we will review the preclinical molecular imaging data that have shaped our current understanding of CAVD, and we will discuss the future role that molecular imaging technologies may play in the clinical diagnosis and treatment of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yoganathan AP, He Z, Casey JS. Fluid mechanics of heart valves. Annu Rev Biomed Eng. 2004;6:331–62.

    Article  CAS  PubMed  Google Scholar 

  2. Sacks MS, Yoganathan AP. Heart valve function: a biomechanical perspective. Philos Trans R Soc Lond B Biol Sci. 2007;362:1369–91.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Sacks MS, Smith DB, Hiester ED. The aortic valve microstructure: effects of transvalvular pressure. J Biomed Mater Res. 1998;41:131–41.

    Article  CAS  PubMed  Google Scholar 

  4. Stella JA, Liao J, Sacks MS. Time-dependent biaxial mechanical behavior of the aortic heart valve leaflet. J Biomech. 2007;40:3169–77.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Schoen F. Aortic valve structure-function correlations: role of elastic fibers no longer a stretch of the imagination. J Heart Valve Dis. 1997;6:1–6.

    CAS  PubMed  Google Scholar 

  6. Schoen FJ, Edwards WD. Valvular heart disease: general principles and stenosis. In: Silver MD, Gotlieb AI, Schoen FJ, editors. Cardiovascular pathology. New York: Churchill Livingstone; 2001. p. 402–42.

    Google Scholar 

  7. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB. Heart disease and stroke statistics–2013 update: a report from the american heart association. Circulation. 2013;127:e6–245.

    Article  PubMed  Google Scholar 

  8. Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M. Burden of valvular heart diseases: a population-based study. Lancet. 2006;368:1005–11.

    Article  PubMed  Google Scholar 

  9. Otto CM. Calcific aortic stenosis–time to look more closely at the valve. N Engl J Med. 2008;359:1395–8.

    Article  CAS  PubMed  Google Scholar 

  10. Rajamannan NM, Evans FJ, Aikawa E, Grande-Allen KJ, Demer LL, Heistad DD, Simmons CA, Masters KS, Mathieu P, O’Brien KD, Schoen FJ, Towler DA, Yoganathan AP, Otto CM. Calcific aortic valve disease: not simply a degenerative process: a review and agenda for research from the national heart and lung and blood institute aortic stenosis working group. Executive summary: calcific aortic valve disease-2011 update. Circulation. 2011;124:1783–91.

    Article  PubMed Central  PubMed  Google Scholar 

  11. New SE, Aikawa E. Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification. Circ Res. 2011;108:1381–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Dweck MR, Jones C, Joshi NV, Fletcher AM, Richardson H, White A, Marsden M, Pessotto R, Clark JC, Wallace WA, Salter DM, McKillop G, van Beek EJ, Boon NA, Rudd JH, Newby DE. Assessment of valvular calcification and inflammation by positron emission tomography in patients with aortic stenosis. Circulation. 2012;125:76–86.

    Article  CAS  PubMed  Google Scholar 

  13. Aikawa E, Nahrendorf M, Sosnovik D, Lok VM, Jaffer FA, Aikawa M, Weissleder R. Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. Circulation. 2007;115:377–86.

    Article  CAS  PubMed  Google Scholar 

  14. Hutcheson JD, Aikawa E, Merryman WD. Potential drug targets for calcific aortic valve disease. Nat Rev Cardiol. 2014;11:218–31.

    Article  CAS  PubMed  Google Scholar 

  15. Libby P, Sasiela W. Plaque stabilization: can we turn theory into evidence? Am J Cardiol. 2006;98:26P–33.

    Article  CAS  PubMed  Google Scholar 

  16. Lin TC, Tintut Y, Lyman A, Mack W, Demer LL, Hsiai TK. Mechanical response of a calcified plaque model to fluid shear force. Ann Biomed Eng. 2006;34:1535–41.

    Article  PubMed  Google Scholar 

  17. Stamatas GN, McIntire LV. Rapid flow-induced responses in endothelial cells. Biotechnol Prog. 2001;17:383–402.

    Article  CAS  PubMed  Google Scholar 

  18. Butcher JT, Penrod AM, Garcia AJ, Nerem RM. Unique morphology and focal adhesion development of valvular endothelial cells in static and fluid flow environments. Arterioscler Thromb Vasc Biol. 2004;24:1429–34.

    Article  CAS  PubMed  Google Scholar 

  19. Cucina A, Sterpetti AV, Pupelis G, Fragale A, Lepidi S, Cavallaro A, Giustiniani Q, Santoro DAL. Shear stress induces changes in the morphology and cytoskeleton organisation of arterial endothelial cells. Eur J Vasc Endovasc Surg. 1995;9:86–92.

    Article  CAS  PubMed  Google Scholar 

  20. Simmons CA, Grant GR, Manduchi E, Davies PF. Spatial heterogeneity of endothelial phenotypes correlates with side-specific vulnerability to calcification in normal porcine aortic valves. Circ Res. 2005;96:792–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Barakat AI, Davies PF. Mechanisms of shear stress transmission and transduction in endothelial cells. Chest. 1998;114:58S–63.

    Article  CAS  PubMed  Google Scholar 

  22. Davies PF, Tripathi SC. Mechanical stress mechanisms and the cell. An endothelial paradigm. Circ Res. 1993;72:239–45.

    Article  CAS  PubMed  Google Scholar 

  23. Ingber DE. Mechanobiology and diseases of mechanotransduction. Ann Med. 2003;35:564–77.

    Article  PubMed  Google Scholar 

  24. Jaalouk DE, Lammerding J. Mechanotransduction gone awry. Nat Rev Mol Cell Biol. 2009;10:63–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Butcher JT, Nerem RM. Valvular endothelial cells and the mechanoregulation of valvular pathology. Philos Trans R Soc Lond B Biol Sci. 2007;362:1445–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Nahrendorf M, Jaffer FA, Kelly KA, Sosnovik DE, Aikawa E, Libby P, Weissleder R. Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation. 2006;114:1504–11.

    Article  CAS  PubMed  Google Scholar 

  27. Davies MJ, Treasure T, Parker DJ. Demographic characteristics of patients undergoing aortic valve replacement for stenosis: relation to valve morphology. Heart. 1996;75:174–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Balachandran K, Alford PW, Wylie-Sears J, Goss JA, Grosberg A, Bischoff J, Aikawa E, Levine RA, Parker KK. Cyclic strain induces dual-mode endothelial-mesenchymal transformation of the cardiac valve. Proc Natl Acad Sci U S A. 2011;108:19943–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Paruchuri S, Yang JH, Aikawa E, Melero-Martin JM, Khan ZA, Loukogeorgakis S, Schoen FJ, Bischoff J. Human pulmonary valve progenitor cells exhibit endothelial/mesenchymal plasticity in response to vascular endothelial growth factor-a and transforming growth factor-beta2. Circ Res. 2006;99:861–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Wylie-Sears J, Aikawa E, Levine RA, Yang JH, Bischoff J. Mitral valve endothelial cells with osteogenic differentiation potential. Arterioscler Thromb Vasc Biol. 2011;31:598–607.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Hjortnaes J, Butcher J, Figueiredo JL, Riccio M, Kohler RH, Kozloff KM, Weissleder R, Aikawa E. Arterial and aortic valve calcification inversely correlates with osteoporotic bone remodelling: a role for inflammation. Eur Heart J. 2010;31:1975–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Dweck MR, Chow MW, Joshi NV, Williams MC, Jones C, Fletcher AM, Richardson H, White A, McKillop G, van Beek EJ, Boon NA, Rudd JH, Newby DE. Coronary arterial 18f-sodium fluoride uptake: a novel marker of plaque biology. J Am Coll Cardiol. 2012;59:1539–48.

    Article  CAS  PubMed  Google Scholar 

  33. Giachelli CM. Vascular calcification mechanisms. J Am Soc Nephrol: JASN. 2004;15:2959–64.

    Article  PubMed  Google Scholar 

  34. Aikawa E, Aikawa M, Libby P, Figueiredo JL, Rusanescu G, Iwamoto Y, Fukuda D, Kohler RH, Shi GP, Jaffer FA, Weissleder R. Arterial and aortic valve calcification abolished by elastolytic cathepsin s deficiency in chronic renal disease. Circulation. 2009;119:1785–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Hinton RB, Adelman-Brown J, Witt S, Krishnamurthy VK, Osinska H, Sakthivel B, James JF, Li DY, Narmoneva DA, Mecham RP, Benson DW. Elastin haploinsufficiency results in progressive aortic valve malformation and latent valve disease in a mouse model. Circ Res. 2010;107:549–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Helske S, Syvaranta S, Lindstedt KA, Lappalainen J, Oorni K, Mayranpaa MI, Lommi J, Turto H, Werkkala K, Kupari M, Kovanen PT. Increased expression of elastolytic cathepsins s, k, and v and their inhibitor cystatin c in stenotic aortic valves. Arterioscler Thromb Vasc Biol. 2006;26:1791–8.

    Article  CAS  PubMed  Google Scholar 

  37. Zaheer A, Murshed M, De Grand AM, Morgan TG, Karsenty G, Frangioni JV. Optical imaging of hydroxyapatite in the calcified vasculature of transgenic animals. Arterioscler Thromb Vasc Biol. 2006;26:1132–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Fleisch H. Development of bisphosphonates. Breast Cancer Res BCR. 2002;4:30–4.

    Article  CAS  Google Scholar 

  39. Kozloff KM, Volakis LI, Marini JC, Caird MS. Near-infrared fluorescent probe traces bisphosphonate delivery and retention in vivo. J Bone Miner Res: Off J Am Soc Bone Miner Res. 2010;25:1748–58.

    Article  CAS  Google Scholar 

  40. Aikawa E, Nahrendorf M, Figueiredo JL, Swirski FK, Shtatland T, Kohler RH, Jaffer FA, Aikawa M, Weissleder R. Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation. 2007;116:2841–50.

    Article  CAS  PubMed  Google Scholar 

  41. Rabkin-Aikawa E, Farber M, Aikawa M, Schoen FJ. Dynamic and reversible changes of interstitial cell phenotype during remodeling of cardiac valves. J Heart Valve Dis. 2004;13:841–7.

    PubMed  Google Scholar 

  42. Filip DA, Radu A, Simionescu M. Interstitial cells of the heart valves possess characteristics similar to smooth muscle cells. Circ Res. 1986;59:310–20.

    Article  CAS  PubMed  Google Scholar 

  43. Chester AH, Taylor PM. Molecular and functional characteristics of heart-valve interstitial cells. Philos Trans R Soc Lond B Biol Sci. 2007;362:1437–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G. The myofibroblast: one function, multiple origins. Am J Pathol. 2007;170:1807–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Hutcheson JD, Chen J, Sewell-Loftin MK, Ryzhova LM, Fisher CI, Su YR, Merryman WD. Cadherin-11 regulates cell-cell tension necessary for calcific nodule formation by valvular myofibroblasts. Arterioscler Thromb Vasc Biol. 2013;33:114–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Hutcheson JD, Ryzhova LM, Setola V, Merryman WD. 5-ht (2b) antagonism arrests non-canonical tgf-beta1-induced valvular myofibroblast differentiation. J Mol Cell Cardiol. 2012;53:707–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Mohler 3rd ER, Gannon F, Reynolds C, Zimmerman R, Keane MG, Kaplan FS. Bone formation and inflammation in cardiac valves. Circulation. 2001;103:1522–8.

    Article  PubMed  Google Scholar 

  48. New SE, Goettsch C, Aikawa M, Marchini JF, Shibasaki M, Yabusaki K, Libby P, Shanahan CM, Croce K, Aikawa E. Macrophage-derived matrix vesicles: an alternative novel mechanism for microcalcification in atherosclerotic plaques. Circ Res. 2013;113:72–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Aikawa MD, PhD .

Editor information

Editors and Affiliations

Additional information

Sources of Funding

Dr. Aikawa is supported by grants from the National Institute of Health (R01HL114805; R01HL109506) and Harvard Catalyst Reactor Program.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hutcheson, J.D., Aikawa, E. (2015). Pathobiology and Optical Molecular Imaging of Calcific Aortic Valve Disease. In: Aikawa, E. (eds) Cardiovascular Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-09268-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09268-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09267-6

  • Online ISBN: 978-3-319-09268-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics