Skip to main content

Innovations in Microscopic Imaging of Atherosclerosis and Valvular Disease

  • Chapter
  • First Online:
Cardiovascular Imaging

Abstract

Calcific aortic valve disease (CAVD) is still an unsolved medical problem, because the pathogenesis of CAVD is poorly understood and early calcification is hard to identify. The lack of high-resolution imaging tools to study early stage disease further hampers the search for therapeutic targets.

Micro-optical coherence tomography (μOCT), which is a new form of OCT, is the highest-resolution cross-sectional OCT technology available today with 1 μm resolution. We used μOCT to visualize detailed cellular and subcellular structure associated with early calcific changes in diseased human and murine aortic valves. The results suggest that μOCT imaging has the potential to provide new insights into underlying mechanisms of CAVD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. FDA U.S. Food and Drug Administration. http://www.fda.gov/ForConsumers/ByAudience/ForPatientAdvocates/CardiovascularInfo/default.htm.

  2. Huang D, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81.

    Article  CAS  PubMed  Google Scholar 

  3. de Boer JF, et al. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett. 2003;28(21):2067–9.

    Article  PubMed  Google Scholar 

  4. Leitgeb R, Hitzenberger CF, Fercher AF. Performance of fourier domain vs. time domain optical coherence tomography. Opt Express. 2003;11(8):889–94.

    Article  CAS  PubMed  Google Scholar 

  5. Choma MA, et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express. 2003;11(18):2183–9.

    Article  PubMed  Google Scholar 

  6. Yun S, et al. High-speed optical frequency-domain imaging. Opt Express. 2003;11(22):2953–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Suter MJ, et al. Intravascular optical imaging technology for investigating the coronary artery. JACC Cardiovasc Imaging. 2011;4(9):1022–39.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Tearney GJ, et al. In vivo endoscopic optical biopsy with optical coherence tomography. Science. 1997;276(5321):2037–9.

    Article  CAS  PubMed  Google Scholar 

  9. Tearney GJ, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol. 2012;59(12):1058–72.

    Article  PubMed  Google Scholar 

  10. Tearney GJ, et al. Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging. J Am Coll Cardiol Img. 2008;1(6):752–61.

    Article  Google Scholar 

  11. Yabushita H, et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation. 2002;106:1640–5.

    Article  PubMed  Google Scholar 

  12. Tanaka A, Tearney GJ, Bouma BE. Challenges on the frontier of intracoronary imaging: atherosclerotic plaque macrophage measurement by optical coherence tomography. J Biomed Opt. 2010;15(1):011104.

    Article  PubMed  Google Scholar 

  13. Tearney GJ, Jang IK, Bouma BE. Optical coherence tomography for imaging the vulnerable plaque. J Biomed Opt. 2013;11(2):021002.

    Article  Google Scholar 

  14. Tanaka A, et al. Morphology of exertion-triggered plaque rupture in patients with acute coronary syndrome: an optical coherence tomography study. Circulation. 2008;118(23):2368–73.

    Article  PubMed  Google Scholar 

  15. Virmani R, et al. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20(5):1262–75.

    Article  CAS  PubMed  Google Scholar 

  16. Liu L, et al. Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography. Nat Med. 2011;17(8):1010–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Horstkotte D, Loogen F. The natural history of aortic valve stenosis. Eur Heart J. 1988;9(Suppl E):57–64.

    Article  PubMed  Google Scholar 

  18. Otto CM. Calcific aortic stenosis–time to look more closely at the valve. N Engl J Med. 2008;359(13):1395–8.

    Article  CAS  PubMed  Google Scholar 

  19. Chan KL, et al. Effect of lipid lowering with rosuvastatin on progression of aortic stenosis: results of the aortic stenosis progression observation: measuring effects of rosuvastatin (ASTRONOMER) trial. Circulation. 2010;121(2):306–14.

    Article  CAS  PubMed  Google Scholar 

  20. Cowell SJ, et al. A randomized trial of intensive lipid-lowering therapy in calcific aortic stenosis. N Engl J Med. 2005;352(23):2389–97.

    Article  CAS  PubMed  Google Scholar 

  21. Farmer JA. Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis (the SEAS trial). Curr Atheroscler Rep. 2009;11(2):82–3.

    PubMed  Google Scholar 

  22. Bonow RO, et al. Guidelines for the management of patients with valvular heart disease: executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Patients with Valvular Heart Disease). Circulation. 1998;98(18):1949–84.

    Article  CAS  PubMed  Google Scholar 

  23. Rajamannan NM, et al. Calcific aortic valve disease: not simply a degenerative process: a review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: calcific aortic valve disease-2011 update. Circulation. 2011;124(16):1783–91.

    Article  PubMed Central  PubMed  Google Scholar 

  24. New SE, Aikawa E. Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification. Circ Res. 2011;108((11):1381–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Leopold J, et al. Cellular mechanisms of aortic valve calcification. Circ Cardiovasc Interv. 2012;5(4):605–14.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Hinton Jr RB, et al. Extracellular matrix remodeling and organization in developing and diseased aortic valves. Circ Res. 2006;98(11):1431–8.

    Article  CAS  PubMed  Google Scholar 

  27. Schoen FJ. Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology, and tissue engineering. Circulation. 2008;118(18):1864–80.

    Article  PubMed  Google Scholar 

  28. Stewart BF, et al. Clinical factors associated with calcific aortic valve disease. J Am Coll Cardiol. 1997;29((3):630––4.

    Article  PubMed  Google Scholar 

  29. Demer LL. Cholesterol in vascular and valvular calcification. Circulation. 2001;104(16):1881–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Rodriguez KJ, et al. Manipulation of valve composition to elucidate the role of collagen in aortic valve calcification. BMC Cardiovasc Disord. 2014;14(1):29.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Mohler 3rd ER. Mechanisms of aortic valve calcification. Am J Cardiol. 2004;94(11):1396–402.

    Article  PubMed  Google Scholar 

  32. Aikawa E, et al. Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. Circulation. 2007;115(3):377–86.

    Article  CAS  PubMed  Google Scholar 

  33. Tangirala RK, et al. Formation of cholesterol monohydrate crystals in macrophage-derived foam cells. J Lipid Res. 1994;35(1):93–104.

    CAS  PubMed  Google Scholar 

  34. Olsson M, Thyberg J, Nilsson J. Presence of oxidized low density lipoprotein in nonrheumatic stenotic aortic valves. Arterioscler Thromb Vasc Biol. 1999;19(5):1218–22.

    Article  CAS  PubMed  Google Scholar 

  35. Mohler ER, et al. Identification and characterization of calcifying valve cells from human and canine aortic valves. J Heart Valve Dis. 1999;8:254–60.

    PubMed  Google Scholar 

  36. Duewell P, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464(7293):1357–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Elmariah S, Mohler ER. The pathogenesis and treatment of the valvulopathy of aortic stenosis: beyond the SEAS. Curr Cardiol Rep. 2010;12(2):125–32.

    Article  PubMed Central  PubMed  Google Scholar 

  38. O’Brien KD. Pathogenesis of calcific aortic valve disease: a disease process comes of age (and a good deal more). Arterioscler Thromb Vasc Biol. 2006;26(8):1721–8.

    Article  PubMed  Google Scholar 

  39. Aikawa E, et al. Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation. 2007;116(24):2841–50.

    Article  CAS  PubMed  Google Scholar 

  40. Vengrenyuk Y, et al. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci U S A. 2006;103(40):14678–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997–14.

Download references

Acknowledgment

This work was funded in part by NIH R01HL076398 and R01HL114805 (to EA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo J. Tearney MD, PhD .

Editor information

Editors and Affiliations

Additional information

Disclosures

Drs. Tearney, Gardecki, Liu, and Chu have applied for patents on the μOCT technology. Dr. Tearney is a consultant for and receives sponsored research funding from Samsung Advanced Institute of Technology.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nomura, Y. et al. (2015). Innovations in Microscopic Imaging of Atherosclerosis and Valvular Disease. In: Aikawa, E. (eds) Cardiovascular Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-09268-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09268-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09267-6

  • Online ISBN: 978-3-319-09268-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics