Skip to main content

Robust State Feedback Control

  • Chapter
  • First Online:
Attractive Ellipsoids in Robust Control

Abstract

In this chapter, a particular family of nonlinear affine control systems with a sufficiently general type of uncertainties is considered. Nonlinear uncertain systems, considered here, are governed by vector ordinary differential equations with so-called quasi-Lipschitz right-hand sides admitting a wide class of external and internal uncertainties (including discontinuous nonlinearities such as relay and hysteresis elements, time-delay blocks, and so on). Here, the simplest class of linear state-feedback controllers is analyzed. Sufficient conditions guaranteeing the boundedness of all possible trajectories of controlled systems are presented. Since bounded dynamics can always be imposed on an ellipsoid, it is suggested that the “robust-optimal” gain matrix of the designated linear feedback be selected in such a way that the “size” of this attractive ellipsoid will be minimal. Several numerical and experimental illustrative examples are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Azhmyakov, A. (2006). Stability of differential inclusions: A computational approach. Mathematical Problems in Engineering, 1–15.

    Google Scholar 

  • Azhmyakov, V. (2011). On the geometric aspects of the invariant ellipsoid method: Application to the robust control design. In Proceedings of the 50th Conference on Decision and Control (pp. 1353–1358).

    Google Scholar 

  • Barabanov, A., & Granichin, O. (1984). Optimal controller for linear plants with bounded noise. Automation and Remote Control, 45, 39–46.

    MathSciNet  Google Scholar 

  • Bellman, R. (1956). Dynamic programming and modern control theory. New York: Academic.

    Google Scholar 

  • Blanchini, F., & Miami, S. (2008). Set theoretic methods in control. Systems and control: Foundations and applications. Boston, MA: Birkhäuser.

    Google Scholar 

  • Boyd, S., Ghaoui, E., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory. Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  • Boyd, S., & Vandenberghe, L. (1997). Semidefinite programming relaxations of non-convex problems in control and combinatorial optimization. In A. Paulraj, V. Roychowdhury, & C. D. Schaper, Communications, computation, control and signal processing: A tribute to Thomas Kailath (pp. 279–288). Boston: Kluwer.

    Chapter  Google Scholar 

  • Chen, P., Qin, H., & Huang, J. (2001). Local stabilization of a class of nonlinear systems by dynamic output feedback. Automatica, 37, 969–981.

    Article  MathSciNet  MATH  Google Scholar 

  • Coutinho, D., Trofino, A., & Barbosa, K. (2003). Robust linear dynamic output feedback controllers for a class of nonlinear systems. In Proceedings of the Conference on Decision and Control (pp. 374–379).

    Google Scholar 

  • Dahleh, M., Pearson, J., & Boyd, J. (1988). Optimal rejection of persistent disturbances, robust stability, and mixed sensitivity minimization. IEEE Transactions on Automatic Control, 33, 722–731.

    Article  MATH  Google Scholar 

  • Glover, J. D., & Schweppe, F. C. (1971). Control of linear dynamic systems with set constrained disturbance. IEEE Transaction on Automatic Control, 16, 411–423. ellipsoids/glover1971.pdf.

    Google Scholar 

  • Gonzalez-Garcia, S., Polyakov, A., & Poznyak, A. (2011). Using the method of invariant ellipsoids for linear robust output stabilization of spacecraft. Automation and Remote Control, 72, 540–555.

    Article  MathSciNet  MATH  Google Scholar 

  • Haykin, S. (2009). Neural networks and learning machines. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Henrion, D., Loefberg, J., Kocvara, M., & Stingl, M. (2006). Solving polynomial static output feedback problems with PENBMI. In Proceedings of the IEEE Conference on Decision and Control (pp. 7581–7586).

    Google Scholar 

  • Hong, Y. (2008). A globally uniformly ultimately bounded adaptive robust control approach to a second-order nonlinear motion system with input saturation. West Lafayette: Purdue University.

    Google Scholar 

  • Ioannou, P., & Sun, J. (1996). Robust adaptive control. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Isidori, A., Teel, A., & Praly, L. (2000). A note on the problem of semiglobal practical stabilization of uncertain nonlinear systems via dynamic output feedback. System and Control Letters, 39, 165–171.

    Article  MathSciNet  MATH  Google Scholar 

  • Khalil, H. (2002). Nonlinear systems. Upper Saddle River: Prentice Hall.

    MATH  Google Scholar 

  • Kurzhanski, A. B., & Varaiya, P. (2006). Ellipsoidal techniques for reachability under state constraints. SIAM Journal on Control and Optimization, 45, 1369–1394. ellipsoids/kurzhanski2006.pdf.

    Google Scholar 

  • Kurzhanski, A., & Veliov, V. (1994). Modeling techniques and uncertain systems. New York: Birkhäuser.

    Google Scholar 

  • Lakshmikantham, V., Leela, S., & Martynyuk, A. (1990). Practical stability of nonlinear systems. New Jersey, London, Singapore, Hong Kong: World Scientific.

    Google Scholar 

  • Lin, W., & Qian, C. (2001). Semi-global robust stabilization of mimo nonlinear systems by partial state and dynamic output feedback. Automatica, 37, 1093–1101.

    Article  MATH  Google Scholar 

  • Mera, M., Poznyak, A., & Azhmyakov, V. (2011). On the robust control design for a class of continuous-time dynamical systems with a sample-data output. In Proceedings of the IFAC World Congress.

    Google Scholar 

  • Michel, A., Hou, L., & Liu, D. (2007). Stability of dynamical systems. New York: Birkhäuser.

    Google Scholar 

  • Polyak, B. T., Nazin, S., Durieu, C., & Walter, E. (2004). Ellipsoidal parameter or state estimation under model uncertainty. Automatica, 40, 1171–1179. ellipsoids/polyak2004.pdf.

    Google Scholar 

  • Polyak, B. T., & Topunov, M. V. (2008) Suppression of bounded exogenous disturbances: Output feedback. Automation and Remote Control, 69, 801–818. ellipsoids/polyak2008.pdf.

    Google Scholar 

  • Pontryagin, L. S., Boltyansky, V. G., Gamkrelidze, R. V., & Mishenko, E. F. (1969). Mathematical theory of optimal processes (Translated from Russian). New York: Interscience.

    Google Scholar 

  • Poznyak, A. (2008). Advanced mathematical tools for automatic control engineers: Deterministic techniques. Amsterdam: Elsevier.

    Google Scholar 

  • Poznyak, A., Sanchez, E., & Yu, W. (2001). Differential neural networks: Identification, state estimation and trajectory tracking. Singapore: World Scientific.

    Google Scholar 

  • Utkin, V. (1992). Sliding modes in control optimization. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Yakubovich, E. (1976). Solution of the optimal control problem for the linear discrete systems. Automation and Remote Control, 36, 1447–1453.

    MathSciNet  Google Scholar 

  • Zhou, K., Doyle, J., & Glover, K. (1996). Robust and optimal control. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Zubov, V. (1962). Mathematical methods for the study of automatic control systems. New York: Pergamon Press.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Poznyak, A., Polyakov, A., Azhmyakov, V. (2014). Robust State Feedback Control. In: Attractive Ellipsoids in Robust Control. Systems & Control: Foundations & Applications. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-09210-2_3

Download citation

Publish with us

Policies and ethics