Skip to main content

Attractive Ellipsoid Method with Adaptation

  • Chapter
  • First Online:
Attractive Ellipsoids in Robust Control

Abstract

This chapter deals with the development of a state estimator and adaptive controller based on the attractive ellipsoid method (AEM) for a class of uncertain nonlinear systems having “quasi-Lipschitz” nonlinearities as well as external perturbations. The set of stabilizing feedback matrices is given by a specific matrix inequality including the characteristic matrix of the attractive ellipsoid that contains all possible bounded trajectories around the origin. Here we present two modifications of the AEM that allow us to use online information obtained during the process and to adjust matrix parameters participating in constraints that characterize the class of adaptive stabilizing feedbacks. The proposed method guarantees that under a specific persistent excitation condition, the controlled system trajectories converge to an ellipsoid of “minimal size” having a minimal trace of the corresponding inverse ellipsoidal matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The solution X of the optimization problem

    $$\displaystyle{ \left\Vert A - XB\right\Vert ^{2} \rightarrow \mathop{\min }\limits_{ X} }$$
    (12.21)

    satisfies the identity

    $$\displaystyle{ \begin{array}{c} \frac{\partial } {\partial X}\left\Vert A - XB\right\Vert ^{2} = \frac{\partial } {\partial X}\mathrm{tr}\left\{\left(A - XB\right)\left(A^{\intercal }- B^{\intercal }X^{\intercal }\right)\right\} \\ = -2\left(AB^{\intercal }- X^{+}BB^{\intercal }\right) = 0, \end{array} }$$

    or equivalently, \(X^{{\ast}}BB^{\intercal } = AB^{\intercal }\), whose solution (in the case \(BB^{\intercal } > 0\)) is

    $$\displaystyle{ X^{{\ast}} = AB^{+} + Y \left(I - BB^{+}\right),\text{ }B^{+}:= B^{\intercal }\left(BB^{\intercal }\right)^{-1}, }$$

    where Y is any matrix of the corresponding size. So one has

    $$\displaystyle{ \begin{array}{c} \left\Vert X^{{\ast}}\right\Vert ^{2} = \left\Vert AB^{+}\right\Vert ^{2} + \left\Vert Y \left(I - BB^{+}\right)\right\Vert ^{2} \\ + 2\mathrm{tr}\left\{AB^{+}\left(I -\left(\left(BB^{\intercal }\right)^{-1}B\right)B^{\intercal }\right)Y ^{\intercal }\right\} = \\ \left\Vert AB^{+}\right\Vert ^{2} + \left\Vert Y \left(I - BB^{+}\right)\right\Vert ^{2} \geq \left\Vert AB^{+}\right\Vert ^{2}. \end{array} }$$

    This means that the solution of the optimization problem (12.21) of minimal norm is X  = AB +.

  2. 2.

    We use the variable coordinate change x 1 = q 1, x 2 = q 2, \(x_{3} =\dot{ q}_{1}\), and \(x_{4} =\dot{ q}_{2}\). The Pendubot top position is (x 1, x 2, x 3, x 4) = (π∕2, 0, 0, 0).

  3. 3.

    H + is the pseudoinverse matrix to H defined in the Moore–Penrose sense (Poznyak 2008).

Bibliography

  • Anderson, B. D. O. (1985). Adaptive systems, lack of persistency of excitation and bursting phenomena. Automatica, 21, 247–258.

    Google Scholar 

  • Barabanov, A., & Granichin, O. (1984). Optimal controller for linear plants with bounded noise. Automation and Remote Control, 45, 39–46.

    MathSciNet  Google Scholar 

  • Davila, J., & Poznyak, A. (2011). Dynamic sliding mode control design using attracting ellipsoid method. Automatica, 47, 1467–1472.

    Article  MathSciNet  MATH  Google Scholar 

  • Duncan, G., & Schweppe, F. (1971). Control of linear dynamic systems with set constrained disturbances. IEEE Transactions on Automatic Control, 16, 411–423.

    Article  Google Scholar 

  • Francis, B., Helton, J., & Zames, G. (1984). H-optimal feedback controllers for linear multivariable systems. IEEE Transactions on Automatic Control, 29, 888–900.

    Article  MathSciNet  MATH  Google Scholar 

  • Gonzalez-Garcia, S., Polyakov, A., & Poznyak, A. (2011). Using the method of invariant ellipsoids for linear robust output stabilization of spacecraft. Automation and Remote Control, 72, 540–555.

    Article  MathSciNet  MATH  Google Scholar 

  • Holmstrom, K., Goran, A., & Edvall, M. (2009). User’s Guide for TOMLAB/CPLEX v12.1.

    Google Scholar 

  • Ioannou, P., & Sun, J. (1996). Robust adaptive control. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Kurzhanski, A., & Veliov, V. (1994). Modeling techniques and uncertain systems. New York: Birkhäuser.

    Google Scholar 

  • Lakshmikantham, V., Leela, S., & Martynyuk, A. (1990). Practical stability of nonlinear systems. New Jersey, London, Singapore, Hong Kong: World Scientific.

    Google Scholar 

  • Ljung, L. (1999). Sistem identification: Theory for the user. New Jersey: Prentice Hall PTR.

    Google Scholar 

  • Narendra, K. S., & Annaswamy, A. M. (2005). Stable adaptive systems. New York: Dover Publications Inc.

    Google Scholar 

  • Nazin, S., Polyak, B., & Topunov, M. (2007). Rejection of bounded exogenous disturbances by the method of invariant ellipsoids. Automation and Remote Control, 68, 467–486.

    Article  MathSciNet  MATH  Google Scholar 

  • Ordaz, P., & Poznyak, A. (2012). The Furuta’s pendulum stabilization without the use of a mathematical model: Attractive ellipsoid method with KL-adaptation. In 51-th IEEE Conference on Decision and Control, Maui, Hawaii.

    Google Scholar 

  • Ordaz, P., & Poznyak, A. (2014). “KL”-gain adaptation for attractive ellipsoid method. IMA Journal of Mathematical Control and Information. doi:10.1093/imamci/dnt046.

    Google Scholar 

  • Peaucelle, D., Henrion, D., Labit, Y., & Taitz, K. (2002). User’s guide for SeDuMi Interface 1.04.

    Google Scholar 

  • Polyakov, A., & Poznyak, A. (2011). Invariant ellipsoid method for minimization of unmatched disturbances effects in sliding mode control. Automatica, 47, 1450–1454.

    Article  MathSciNet  MATH  Google Scholar 

  • Poznyak, A. (2004). Variable structure systems: From Principles to Implementation, chapter 3. IEE Control Series (Vol. 66, pp. 45–78). London, UK: The IET.

    Google Scholar 

  • Poznyak, A. (2008). Advanced mathematical tools for automatic control engineers: Deterministic techniques. Amsterdam: Elsevier.

    Google Scholar 

  • Sastry, S. (1999). Nonlinear systems. New York: Springer.

    Book  MATH  Google Scholar 

  • Sastry, S., & Bodson, M. (1994). Adaptive control: stability, convergence, and robustness. New York: Prentice-Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Poznyak, A., Polyakov, A., Azhmyakov, V. (2014). Attractive Ellipsoid Method with Adaptation. In: Attractive Ellipsoids in Robust Control. Systems & Control: Foundations & Applications. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-09210-2_12

Download citation

Publish with us

Policies and ethics