Skip to main content

Bounded Robust Control

  • Chapter
  • First Online:
Attractive Ellipsoids in Robust Control

Abstract

This chapter deals with a bounded control design for a class of nonlinear systems whose mathematical model may not be explicitly given. This class of uncertain nonlinear systems is governed by a system of ordinary differential equations with quasi-Lipschitz right-hand sides and contains external perturbations as well. The attractive ellipsoid method (AEM) allows us to describe the class of nonlinear feedbacks (containing a nonlinear projection operator, a linear state estimator, and a feedback matrix gain) guaranteeing the boundedness of all possible trajectories around the origin. To satisfy this property, some modifications of the AEM are introduced: basically, some sort of sample-time corrections of the feedback parameters are required. The optimization of feedback within this class of controllers is associated with the selection of the feedback parameters such that the trajectory converges within an ellipsoid of “minimal size.” The effectiveness of the suggested approach is illustrated by its application to a flexible arm system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Davila, J., & Poznyak, A. (2011). Dynamic sliding mode control design using attracting ellipsoid method. Automatica, 47, 1467–1472.

    Article  MathSciNet  MATH  Google Scholar 

  • Duncan, G., & Schweppe, F. (1971). Control of linear dynamic systems with set constrained disturbances. IEEE Transactions on Automatic Control, 16, 411–423.

    Article  Google Scholar 

  • Ioannou, P., & Sun, J. (1996). Robust adaptive control. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Jong, M. L., & Jay, H. L. (2005). Approximate dynamic programming-based approaches for input–output data-driven control of nonlinear processes. Automatica, 41, 1281–1288.

    Google Scholar 

  • Kabamba, P. T., & Hara, S. (1993). Worst-case analysis and design of sampled-data control systems. IEEE Transactions on Automatic Control, 38(9), 1337–1358.

    Google Scholar 

  • Narendra, K.S., & Annaswamy, A.M. (2005). Stable adaptive systems. New York: Dover Publications Inc.

    Google Scholar 

  • Ordaz, P., Alazki, H., & Poznyak, A. (2013). A sample-time adjusted feedback for robust bounded output stabstazation. Kybernetika, 49(6), 911–934.

    MathSciNet  MATH  Google Scholar 

  • Ordaz, P., & Poznyak, A. (2012). The Furuta’s pendulum stabilization without the use of a mathematical model: Attractive ellipsoid method with KL-adaptation. In 51-th IEEE Conference on Decision and Control, Maui, Hawaii.

    Google Scholar 

  • Polyakov, A., & Poznyak, A. (2011). Invariant ellipsoid method for minimization of unmatched disturbances effects in sliding mode control. Automatica, 47, 1450–1454.

    Article  MathSciNet  MATH  Google Scholar 

  • Poznyak, A. (2008). Advanced mathematical tools for automatic control engineers: Deterministic techniques. Amsterdam: Elsevier.

    Google Scholar 

  • Poznyak, A., Azhmyakov, V., & Mera, M. (2011). Practical output feedback stabilisation for a class of continuous-time dynamic systems under sample-data outputs. International Journal of Control, 84, 1408–1416.

    Article  MathSciNet  MATH  Google Scholar 

  • Rudin, W. (1991). Functional analysis (2nd ed.). New York: MacGraw-Hill Inc.

    MATH  Google Scholar 

  • Sussmann, H. J., Sontag, E. D., & Yang, Y. (1994). A general result on the stabilization of linear systems using bounded controls. IEEE Transactions on Automatic Control, 39(12), 2411–2425.

    Article  MathSciNet  MATH  Google Scholar 

  • Teel, A. R. (1996). A nonlinear small gain theorem for the analysis of control systems with saturation. IEEE Transactions on Automatic Control, 41(9), 1256–1270.

    Article  MathSciNet  MATH  Google Scholar 

  • Ting Shu, H., & Zong Li, L. (2001). Control systems with actuator saturation: Analyze and design. Boston: Birkhäuser.

    Google Scholar 

  • Utkin, V. (1993). Sliding mode control design principles and applications to electric drives. IEEE Transactions on Industrial Electronics, 40(1), 23–26.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Poznyak, A., Polyakov, A., Azhmyakov, V. (2014). Bounded Robust Control. In: Attractive Ellipsoids in Robust Control. Systems & Control: Foundations & Applications. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-09210-2_11

Download citation

Publish with us

Policies and ethics