Skip to main content

The Sediment Budgets Evaluation in a Basin Using LiDAR DTMs

  • Conference paper
  • First Online:
Engineering Geology for Society and Territory - Volume 3

Abstract

In this study, a basin with an area of 20 km2 was chosen as the study area to more quantitatively understand the temporal and spatial variation of the rainfall-induced sediment volume changes during a period. The 2 m high-resolution DTMs derived from airborne LiDAR data acquired in 2005 and 2010 were used to characterize sediment yield and sediment transport processes such as debris flows and hyper-concentrated flows in the study area. With an acceptable volumetric estimation error (20 %) due to uncertainty of the topography, comparing the two temporal DTMs reveal that LiDAR is an efficient way to assess sediment volume changes at the basin scale over a 5 year period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baldo M, Bicocchi C, Chiocchini U, Giordan D, Lollino G (2009) LIDAR monitoring of mass wasting processes: the Radicofani landslide, Province of Siena, Central Italy. Geomorphology 105(3–4):193–201

    Article  Google Scholar 

  • DeLong SB, Prentice CS, Hilley GE, Ebert Y (2012) Multi-temporal ALSM change detection, sediment delivery, and process mapping at an active earthflow. Earth Surf Proc Land 37:262–272

    Article  Google Scholar 

  • Frankel KL, Dolan JF (2007) Characterizing arid region alluvial fan surface roughness with airborne laser swath mapping digital topographic data. J Geophys Res 112:F02025. doi:10.1029/2006JF000644

    Google Scholar 

  • Glenn NF, Streuker DR, Chadwick DJ, Thackray GD, Dorsch SJ (2006) Analysis of Lidar derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology 73:131–148

    Article  Google Scholar 

  • Guzzetti F, Ardizzone F, Cardinali M, Galli M, Rossi M, Valigi D (2009) Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth Planet Sci Lett 279(222–229):2009. doi:10.1016/j.epsl.01.005

    Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basin: hydrophysical approach to quantitative morphology. Bull Geol Soc Am 56:275–370

    Article  Google Scholar 

  • James LA, Hodgson ME, Ghoshal S, Latiolais MM (2012) Geomorphic change detection using historic maps and DEM differencing: the temporal dimension of geospatial analysis. Geomorphology 137:181–198

    Article  Google Scholar 

  • Mckean J, Roering J (2004) Objective landslide detection and surface morphology mapping using high resolution airborne laser altimetry. Geomorphology 57:331–351. doi:10.1016/S0169-555X(03)00164-8

    Article  Google Scholar 

  • Pirotti F, Tarolli P (2010) Suitability of LiDAR point density and derived landform curvature maps for channel network extraction. Hydrol Process 24:1187–1197

    Article  Google Scholar 

  • Sofia G, Pirotti F, Tarolli P (2013) Variations in multiscale curvature distribution and signatures of LiDAR DTM errors. Earth Surf Proc Land 38(10):1116–1134. doi:10.1002/esp.3363

    Article  Google Scholar 

  • Strahler AN (1950) Equilibrium theory of erosional slope approached by frequency distribution analysis. Am J Sci 248:673–696

    Article  Google Scholar 

  • Tarolli P, Fontana GD (2009) Hillslope-to-valley transition morphology: new opportunities from high resolution DTMs. Geomorphology 113:47–56. doi:10.1016/j.geomorph.2009.02.006

    Article  Google Scholar 

  • Tarolli P, Arrowsmith JR, Vivoni ER (2009) Understanding earth surface processes from remotely sensed digital terrain models. Geomorphology 113:1–3. doi:10.1016/j.geomorph.2009.07.005

    Article  Google Scholar 

  • Tseng CM, Lin CW, Stark CP, Liu JK, Fei LY, Hsieh YC (2013) Application of a multi-temporal, LiDAR-derived, digital terrain model in a landslide-volume estimation. Earth Surf Proc Land 38:1587–1601. doi:10.1002/esp.3454

    Google Scholar 

  • Wheaton JM, Brasington J, Darby SE, Sear DA (2010) Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets. Earth Surf Proc Land 35:136–156

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Ming Tseng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Tseng, CM., Lin, CW., Chang, KJ. (2015). The Sediment Budgets Evaluation in a Basin Using LiDAR DTMs. In: Lollino, G., Arattano, M., Rinaldi, M., Giustolisi, O., Marechal, JC., Grant, G. (eds) Engineering Geology for Society and Territory - Volume 3. Springer, Cham. https://doi.org/10.1007/978-3-319-09054-2_8

Download citation

Publish with us

Policies and ethics