Skip to main content

Identification of Pathway Signatures in Parkinson’s Disease with Gene Ontology and Sparse Regularization

  • Conference paper
  • First Online:
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2013)

Abstract

The purpose of this work is to compare Knowledge Driven Variable Selection (KDVS), a novel method for biomarkers, processes and functions identification with the most frequently used pipeline in the analysis of high–throughput data (Standard pipeline). While in the Standard pipeline the biological knowledge is used after the variable selection and classification phase, in KDVS it is used a priori to structure the data matrix. We analyze the same gene expression dataset using \({\ell _1\ell _2}_{FS}\), a regularization method for variable selection and classification, choosing Gene Ontology (GO) as source of biological knowledge. We compare the lists identified by the pipelines with state–of–the–art benchmark lists of genes and GO terms known to be related with Parkinson’s disease (PD). The results indicate that KDVS performs significantly better than the Standard pipeline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.aroma-project.org

  2. 2.

    http://slipguru.disi.unige.it/Software/L1L2Signature

  3. 3.

    http://slipguru.disi.unige.it/Software/L1L2Py

  4. 4.

    http://www.scfbm.org/content/supplementary/1751-0473-8-2-s1.zip

  5. 5.

    http://slipguru.disi.unige.it/Software/PPlus

  6. 6.

    http://bioinfo.vanderbilt.edu/webgestalt/

  7. 7.

    ftp://ftp.geneontology.org/go/www/GO.gettingStarted.shtml

References

  1. Avramopoulos, D.: Genetics of alzheimer’s disease: recent advances. Genome Med. 1(3), 34 (2009)

    Article  Google Scholar 

  2. Mrzljak, L., Munoz-Sanjuan, I.: Therapeutic strategies for huntingtons disease. Current Topics in Behavioral Neurosciences, pp. 1–41. Springer, Heidelberg (2013)

    Google Scholar 

  3. Zycinski, G., Barla, A., Verri, A.: Svs: Data and knowledge integration in computational biology. In: Conference Proceedings of the IEEE Engineering in Medicine and Biology Society 2011, pp. 6474–6478 (2012)

    Google Scholar 

  4. Zycinski, G., Barla, A., Squillario, M., Sanavia, T., Di Camillo, B., Verri, A.: Knowledge driven variable selection (kdvs) - a new approach to enrichment analysis of gene signatures obtained from high-throughput data. Source Code Biol. Med. 8(1), 2 (2013)

    Article  Google Scholar 

  5. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  6. Da Huang, W., Sherman, B.T., Lempicki, R.A.: Systematic and integrative analysis of large gene lists using david bioinformatics resources. Nat. Protoc. 4(1), 44–57 (2009)

    Article  Google Scholar 

  7. Zhang, B., Kirov, S., Snoddy, J.: Webgestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res. 33, W741–W748 (2005)

    Article  Google Scholar 

  8. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.: Gene ontology: tool for the unification of biology. the gene ontology consortium. Nat. Genet. 25(1), 25–29 (2000)

    Article  Google Scholar 

  9. Kanehisa, M., Goto, S.: Kegg: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28(1), 27–30 (2000)

    Article  Google Scholar 

  10. Barla, A., Mosci, S., Rosasco, L., Verri, A.: A method for robust variable selection with signicance assessment. In: Proceedings of ESANN 2008 (2008)

    Google Scholar 

  11. Squillario, M., Barla, A.: A computational procedure for functional characterization of potential marker genes from molecular data: Alzheimer’s as a case study. BMC Med. Genomics 4, 55 (2011)

    Article  Google Scholar 

  12. Fardin, P., Barla, A., Mosci, S., Rosasco, L., Verri, A., Varesio, L.: The l1–l2 regularization framework unmasks the hypoxia signature hidden in the transcriptome of a set of heterogeneous neuroblastoma cell lines. BMC Genom. 10, 474 (2009)

    Article  Google Scholar 

  13. Edgar, R., Domrachev, M., Lash, A.E.: Gene expression omnibus: Ncbi gene expression and hybridization array data repository. Nucleic Acids Res. 30(1), 207–210 (2002)

    Article  Google Scholar 

  14. Scherzer, C.R., Eklund, A.C., Morse, L.J., Liao, Z., Locascio, J.J., Fefer, D., Schwarzschild, M.A., Schlossmacher, M.G., Hauser, M.A., Vance, J.M., Sudarsky, L.R., Standaert, D.G., Growdon, J.H., Jensen, R.V., Gullans, S.R.: Molecular markers of early parkinson’s disease based on gene expression in blood. Proc. Natl. Acad. Sci. U. S. A. 104(3), 955–960 (2007)

    Article  Google Scholar 

  15. Irizarry, R.A., Bolstad, B.M., Collin, F., Cope, L.M., Hobbs, B., Speed, T.P.: Summaries of affymetrix genechip probe level data. Nucleic Acids Res. 31(4), e15 (2003)

    Article  Google Scholar 

  16. De Mol, C., De Vito, E., Rosasco, L.: Elastic net regularization in learning theory. J. Complex. 25, 201–230 (2009)

    Article  MATH  Google Scholar 

  17. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Roy. Stat. Soc. Ser. B 67, 301–320 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ambroise, C., McLachan, G.: Selection bias in gene extraction on the basis of microarray gene-expression data. Proc. Natl. Acad. Sci. U. S. A. 99(10), 6562–6566 (2002)

    Article  MATH  Google Scholar 

  19. Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R., Leisch, F., Li, C., Maechler, M., Rossini, A.J., Sawitzki, G., Smith, C., Smyth, G., Tierney, L., Yang, J.Y., Zhang, J.: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5(10), R80 (2004)

    Article  Google Scholar 

  20. Leung, Y.F., Cavalieri, D.: Fundamentals of cdna microarray data analysis. Trends Genet. 19(11), 649–659 (2003)

    Article  Google Scholar 

  21. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., Mesirov, J.P.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. PNAS 102(43), 15545–15550 (2005)

    Article  Google Scholar 

  22. Yu, W., Wulf, A., Liu, T., Khoury, M.J., Gwinn, M.: Gene prospector: an evidence gateway for evaluating potential susceptibility genes and interacting risk factors for human diseases. BMC Bioinf. 9, 528 (2008)

    Article  Google Scholar 

  23. Jomova, D.V.K., Lawson, M., Valko, M.: Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem. 345, 91–104 (2010)

    Article  Google Scholar 

  24. Gundersen, V.: Protein aggregation in parkinson’s disease. Acta. Neurol. Scand. Suppl. 122, 82–87 (2010)

    Article  Google Scholar 

  25. Ronchi, C., Cartelli, D., Rodighiero, S., Maggioni, M.G., Cappelletti, G., Giavini, E.: J. Neurochemestry 115(1), 247–258 (2010)

    Google Scholar 

  26. Rohn, T.T., Catlin, L.W.: Immunolocalization of influenza a virus and markers of inflammation in the human parkinson’s disease brain. PLoS One 6(5), e20495 (2011)

    Article  Google Scholar 

  27. Clayton, D.F., George, J.M.: The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends Neurosci. 21(6), 249–254 (1998)

    Article  Google Scholar 

  28. Tezenas du Montcel, S., Charles, P., Goizet, C., Marelli, C., Ribai, P., Vincitorio, C., Anheim, M., Guyant-Marchal, L., Le Bayon, A., Vandenberghe, N., Tchikviladz, M., Devos, D., Le Ber, I., N’Guyen, K., Cazeneuve, C., Tallaksen, C., Brice, A., Durr, A.: Factors influencing disease progression in autosomal dominant cerebellar ataxia and spastic paraplegia. Arch. Neurol. 69(4), 500–508 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Margherita Squillario or Grzegorz Zycinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Squillario, M., Zycinski, G., Barla, A., Verri, A. (2014). Identification of Pathway Signatures in Parkinson’s Disease with Gene Ontology and Sparse Regularization. In: Formenti, E., Tagliaferri, R., Wit, E. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2013. Lecture Notes in Computer Science(), vol 8452. Springer, Cham. https://doi.org/10.1007/978-3-319-09042-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09042-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09041-2

  • Online ISBN: 978-3-319-09042-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics