Skip to main content

Introduction to Electrically Assisted Forming

  • Chapter
  • First Online:
Electrically Assisted Forming

Abstract

Electrically assisted forming (EAF) is a recently introduced metal-forming technique capable of enhancing a metal’s formability during deformation and reducing springback after deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salandro WA, Bunget C, Mears L (2011) Thermo-mechanical investigations of the electroplastic effect. In: International manufacturing science and engineering conference, MSEC2011-50250, p 10

    Google Scholar 

  2. Machlin ES (1959) Applied voltage and the plastic properties of “brittle” rock salt. J Appl Phys 30(7):1109–1110

    Article  Google Scholar 

  3. Nabarro FRN (1967) Theory of crystal dislocations. Chapter IX

    Google Scholar 

  4. Troitskii OA (1969) Electromechanical effect in metals. Pis’ma Zhurn Experim Teoret Fiz, No 10, pp 18

    Google Scholar 

  5. Klimov KM, Novikov II (1982) The “electroplastic effect”. A.A. Baikov Institute of Metallurgy, Academy of Sciences of the USSR, Moscow. Translated from Problemy Prochnosti, No 2, pp 98–103

    Google Scholar 

  6. Xu ZS, Lai ZH, Chen YX (1988) Effect of electric current on the recrystallization behavior of cold worked alpha-ti. Scr Metall 22:187–190

    Article  Google Scholar 

  7. Chen SW, Chen CM, Liu WC (1998) Electric current effects upon the Sn/Cu and Sn/Ni interfacial reactions. J Electron Mater 27:1193

    Article  Google Scholar 

  8. Chen SW, Chen CM (1999) Electric current effects on Sn/Ag interfacial reactions. J Electronic Mat 28:902

    Article  Google Scholar 

  9. Conrad H (2000) Effects of electric current on solid state phase transformations in metals. Mater Sci Eng A287:227–237

    Article  Google Scholar 

  10. Conrad H (2000) Electroplasticity in metals and ceramics. Mat Sci Eng, pp 276–287

    Google Scholar 

  11. Conrad H (2002) Thermally activated plastic flow of metals and ceramics with an electric field or current. Mat Sci Eng A322:100–107

    Article  Google Scholar 

  12. Heigel JC, Andrawes JS, Roth JT, Hoque ME, Ford RM (2005) Viability of electrically treating 6061-T6511 aluminum for use in manufacturing processes. Trans North Am Manuf Res Inst SME 33:145–152

    Google Scholar 

  13. Andrawes JS, Kronenberger TJ, Roth JT, Warley RL (2007) Effects of DC current on the mechanical behavior of AlMg1SiCu. Mater Manuf Proc 22(1):91–101

    Article  Google Scholar 

  14. Perkins TA, Kronenberger TJ, Roth JT (2007) Metallic forging using electrical flow as an alternative to warm/hot working. J Manuf Sci Eng 129(1):84–94

    Article  Google Scholar 

  15. Ross CD, Irvin DB, Roth JT (2007) Manufacturing aspects relating to the effects of DC current on the tensile properties of metals. J Eng Mater Technol 129(2):342–347

    Article  Google Scholar 

  16. Roth JT, Loker I, Mauck D, Warner M, Golovashchenko SF, Krause A (2008) Enhanced formability of 5754 aluminum sheet metal using electric pulsing. Trans North Am Manuf Res Inst SME 36:405–412

    Google Scholar 

  17. Salandro WA, Jones JJ, McNeal TA, Roth JT, Hong ST, Smith MT (2008) Effect of electrical pulsing on various heat treatments of 5xxx series aluminum alloys. International manufacturing science and engineering conference, MSEC 2008-72512, p 10

    Google Scholar 

  18. Salandro WA, Khalifa A, Roth JT (2009) Tensile formability enhancement of magnesium AZ31B-O alloy using electrical pulsing. Trans North Am Manuf Res Inst SME 37:387–394

    Google Scholar 

  19. McNeal TA, Beers JA, Roth JT (2009) The microstructural effects on magnesium alloy AZ31B-O while undergoing an electrically-assisted manufacturing process. International manufacturing science and engineering conference, MSEC 2009-84377, p 10

    Google Scholar 

  20. Green CR, McNeal TA, Roth JT (2009) Springback elimination for Al-6111 alloys using electrically-assisted manufacturing (EAM). Trans North Am Manuf Res Inst SME, 37:403–410

    Google Scholar 

  21. Jones JJ, Roth JT (2009) Effect on the forgeability of magnesium AZ31B-O when a continuous DC electrical current is applied. International manufacturing science and engineering conference, MSEC 2009-84116, p 10

    Google Scholar 

  22. Salandro WA, Roth JT (2009) Formation of 5052 aluminum channels using electrically-assisted manufacturing (EAM). International manufacturing science and engineering conference, MSEC 2009-84117, p 9

    Google Scholar 

  23. Siopis MS, Kinsey BL (2009) Experimental investigation of grain and specimen size effects during electrical-assisted forming. International manufacturing science and engineering conference, MSEC2009-84137, p 6

    Google Scholar 

  24. Siopis MS, Kinsey BL, Kota N, Ozdoganlar OB (2010) Effect of severe prior deformation on electrical-assisted compression of copper specimens. International manufacturing science and engineering conference, MSEC2010-34276, p 7

    Google Scholar 

  25. Dzialo CM, Siopis, Kinsey BL, Weinmann KJ (2010) Effect of current density and zinc content during electrical-assisted forming of copper alloys. CIRP Ann—Manuf Technol 59(1):299–302

    Article  Google Scholar 

  26. Salandro WA, Roth JT (2010) Ch19. electrically-assisted manufacturing. In: Zhang W (ed) Intelligent energy field manufacturing: interdisciplinary process innovations. CRC Press, Boca Raton

    Google Scholar 

  27. Bunget C, Salandro WA, Mears L (2011) Thermal mechanical predictive algorithm for electrically-assisted manufacturing processes (Provisional patented filed on May 25, 2011)

    Google Scholar 

  28. US 7,302,821—Techniques for manufacturing a product using electric current during plastic deformation of material

    Google Scholar 

  29. US 7,516,640—Method and apparatus for forming a blank as a portion of the blank receives pulses of direct current

    Google Scholar 

  30. Electrically Assisted Single-Point Incremental Forming (EA-SPIF), (non-provisional application, disclosure #3484)

    Google Scholar 

  31. Electrically Assisted Metal Forging Process, (non-provisional application, disclosure #3314)

    Google Scholar 

  32. Yao L, Hong C, Yunquo G, Xinbin H (1996) Effect of electric current pulse on superplasticity of aluminum alloy 7475. Trans of Nfsoc 6(1):77–84

    Google Scholar 

  33. Kravchenko V (1966) JETP (USSR) 51:1676

    Google Scholar 

  34. Antolovich SD, Conrad H (2004) The effects of electric currents and fields on deformation in metals, ceramics, and ionic materials: an interpretive survey. Mater Manuf Processes 19(4):587–610

    Article  Google Scholar 

  35. Salandro WA (2012) Thermo-mechanical modeling of the electrically-assisted manufacturing (EAM) technique during open die forging. PhD dissertation, Clemson University

    Google Scholar 

  36. Kronenberger TJ, Johnson DH, Roth JT (2009) Coupled multifield finite element analysis model of upsetting under an applied direct current. J Manuf Sci Eng 131:031003

    Google Scholar 

  37. Ross CD, Kronenberger TJ, Roth JT (2009) Effect of DC on the formability of Ti-6AL-4 V. J Eng Mater Technol 131(3):11

    Article  Google Scholar 

  38. MatWeb Aluminum 6061-T6; 6061-T651. MatWeb Material Property Data, www.matweb.com. Accessed 01 July 2012

  39. MatWeb Magnesium AZ31B-O, Annealed Sheet. MatWeb Material Property Data, www.matweb.com. Accessed 01 July 2012

  40. MatWeb 304 Stainless Steel. MatWeb Material Property Data, www.matweb.com. Accessed 01 July 2012

  41. MatWeb Titanium Ti-6Al-4 V (Grade 5), Annealed. MatWeb Material Property Data, www.matweb.com. Accessed 01 July 2012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wesley A. Salandro .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Salandro, W.A., Jones, J.J., Bunget, C., Mears, L., Roth, J.T. (2015). Introduction to Electrically Assisted Forming. In: Electrically Assisted Forming. Springer Series in Advanced Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-319-08879-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08879-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08878-5

  • Online ISBN: 978-3-319-08879-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics