Skip to main content

Adaptations of Chloroplastic Metabolism in Halophytic Plants

  • Chapter
  • First Online:
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 76))

Abstract

Halophytism is of complex nature and polyphyletic origin in plants. One of the common points of various strategies is a protection of the photosynthetic machinery for a long term. Here we summarize the recent data obtained with halophytic, as with glycophytic plants, concerning the protective strategies against salinity stress operating in chloroplasts composed of protecting both the light capturing machinery and the step of photosynthetic CO2 assimilation. The involvement of reactive oxygen species (ROS) and redox tuning is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allakhverdiev SI, Murata N (2008) Salt stress inhibits photosystems II and I in cyanobacteria. Photosynth Res 98:529–539

    PubMed  CAS  Google Scholar 

  • Amtmann A (2009) Learning from evolution: Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants. Mol Plant 2:3–12

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    CAS  Google Scholar 

  • Azevedo Neto AD, Prisco JT, Eneas-Filho J, Medeiros JV, Gomes-Filho E (2005) Hydrogen peroxide pre-treatment induces salt-stress acclimation in maize plants. J Plant Physiol 162:1114–1122

    PubMed  Google Scholar 

  • Badawi GH, Yamauchi Y, Shimada E, Sasaki R, Kawano N, Tanaka K, Tanaka K (2004) Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Sci 166:919–928

    Google Scholar 

  • Barker DH, Marszalek J, Zimpfer JF, Adams WW III (2004) Changes in photosynthetic pigment composition and absorbed energy allocation during salt stress and CAM induction in Mesembryanthemum crystallinum. Funct Plant Biol 31:781–787

    CAS  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    PubMed  CAS  PubMed Central  Google Scholar 

  • Broetto F, Duarte HM, Lüttge U (2007) Responses of chlorophyll fluorescence parameters of the facultative halophyte and C3–CAM intermediate species Mesembryanthemum crystallinum to salinity and high irradiance stress. J Plant Physiol 164:904–912

    PubMed  CAS  Google Scholar 

  • Bukhov N, Carpenter R (2004) Alternative photosystem I-driven electron transport routes: mechanisms and functions. Photosynth Res 82:17–33

    PubMed  CAS  Google Scholar 

  • Cai-Hong P, Su-Jun Z, Zhi-Zhong G, Bao-Shan W (2005) NaCl treatment markedly enhances H2O2-scavenging system in leaves of halophyte Suaeda salsa. Physiol Plant 125:490–499

    Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen S, Gollop N, Heuer B (2009) Proteomic analysis of salt-stressed tomato (Solanum lycopersicum) seedlings: effect of genotype and exogenous application of glycinebetaine. J Exp Bot 60:2005–2019

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen J, Wang P, Mi HL, Chen GY, Xu DG (2010) Reversible association of ribulose-1,5-bisphosphate carboxylase/oxygenase activase with the thylakoid membrane depends upon the ATP level and pH in rice without heat stress. J Exp Bot 11:2939–2950

    Google Scholar 

  • Chuartzman SG, Nevo R, Shimoni E, Charuvi D, Kiss V, Ohad I, Brumfeld V, Reich Z (2008) Thylakoid membrane remodeling during state transition in Arabidopsis. Plant Cell 20:1029–1039

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cushman JC, Agarie S, Albion RL, Elliot SM, Taybi T, Borland AM (2008a) Isolation and characterization of mutants of common ice plant deficient in Crassulacean acid metabolism. Plant Physiol 147:228–238

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cushman JC, Tillett RL, Wood JA, Branco JM, Schlauch KA (2008b) Large-scale mRNA expression profiling in the common ice plant, Mesembryanthemum crystallinum, performing C3 photosynthesis and crassulacean acid metabolism (CAM). J Exp Bot 59:1875–1894

    PubMed  CAS  Google Scholar 

  • Darie CC, De Pascalis L, Mutschler B, Haehnel W (2006) Studies of the Ndh complex and photosystem II from mesophyll and bundle sheath chloroplasts of the C4-type plant Zea mays. J Plant Physiol 163:800–808

    PubMed  CAS  Google Scholar 

  • Dassanayake M, Oh D-H, Hong H, Bohnert HJ, Cheeseman JM (2011) Transcription strength and halophytic lifestyle. Trends Plant Sci 16:1–3

    PubMed  CAS  Google Scholar 

  • Davies BN, Griffiths H (2012) Competing carboxylases: circadian and metabolic regulation of Rubisco in C3 and CAM Mesembryanthemum crystallinum L. Plant Cell Environ 35:1211–1220

    PubMed  CAS  Google Scholar 

  • Desimone M, Wagner E, Johanningmeier U (1998) Degradation of active-oxygen-modifed ribulose-1,5-bisphosphate carboxylase/oxygenase by chloroplastic proteases requires ATP-hydrolysis. Planta 205:459–466

    CAS  Google Scholar 

  • Díaz M, De Haro V, Munoz R, Quiles MJ (2007) Chlororespiration is involved in the adaptation of Brassica plants to heat and high light intensity. Plant Cell Environ 30:1578–1585

    PubMed  Google Scholar 

  • Edwards GE, Franceschi VR, Vosniesenskaya EV (2004) Single-cell C4 photosynthesis versus the dual-cell (Kranz) paradigm. Annu Rev Plant Biol 55:173–196

    PubMed  CAS  Google Scholar 

  • Eichelmann H, Talts E, Oja V, Padu E, Laisk A (2009) Rubisco in planta kcat is regulated in balance with photosynthetic electron transport. J Exp Bot 60:4077–4088

    PubMed  CAS  PubMed Central  Google Scholar 

  • Flowers TJ, Colmer TD (2005) Salinity tolerance in halophytes. New Phytol 179:945–963

    Google Scholar 

  • Gawronska K, Romanowska E, Miszalski Z, Niewiadomska E (2013) Limitation of C3–CAM shift in the common ice plant under high irradiance. J Plant Physiol 170:129–135

    PubMed  CAS  Google Scholar 

  • Giri J (2011) Glycinebetaine and abiotic stress tolerance in plants. Plant Signal Behav 6:1746–1751

    PubMed  CAS  PubMed Central  Google Scholar 

  • Golding AJ, Johnson GN (2003) Down-regulation of linear and activation of cyclic electron transport during drought. Planta 218:107–114

    PubMed  CAS  Google Scholar 

  • Gómez JM, Jiménez A, Olmos E, Sevilla F (2004) Location and effects of long-term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzymes of pea (Pisum sativum cv. Puget) chloroplasts. J Exp Bot 55: 119–130.

    PubMed  Google Scholar 

  • Gong Q, Li P, Ma S, Rupassara SI, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826–839

    PubMed  CAS  Google Scholar 

  • Griffith M, Timonin M, Wong ACE, Gray GR, Akhter SR, Saldanha M, Rogers MA, Weretilnyk EA, Moffatt B (2007) Thellungiella: an Arabidopsis-related model plant adapted to cold temperatures. Plant Cell Environ 30:529–538

    PubMed  CAS  Google Scholar 

  • Haider MS, Barnes JD, Cushman JC, Borland AM (2012) A CAM- and starch-deficient mutant of the facultative CAM species Mesembryanthemum crystallinum reconciles sink demands by repartitioning carbon during acclimation to salinity. J Exp Bot 63:1985–1996

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    PubMed  CAS  Google Scholar 

  • Heyno E, Gross CM, Laureau C, Culcasi M, Pietri S, Krieger-Liszkay A (2009) Plastid alternative oxidase (PTOX) promotes oxidative stress when overexpressed in tobacco. J Biol Chem 284:31174–31180

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hoshida H, Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Takabe T, Takabe T (2000) Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Mol Biol 43:103–111

    PubMed  CAS  Google Scholar 

  • Houtz RL, Portis AR (2003) The life of ribulose 1,5-bisphosphatecarboxylase/oxygenase – posttranslational facts and mysteries. Arch Biochem Biophys 414:150–158

    PubMed  CAS  Google Scholar 

  • Inan G, Zhang Q, Li P, Wang Z, Cao Z, Zhang H, Zhang C, Quist TM, Goodwin SM, Zhu J, Shi H, Damsz B, Charbaji T, Gong Q, Ma S, Fredricksen M, Galbraith DW, Jenks MA, Rhodes D, Hasegawa PM, Bohnert HJ, Joly RJ, Bressan RA, Zhu JK (2004) Salt Cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 135:1718–1737

    PubMed  CAS  PubMed Central  Google Scholar 

  • Innocenti ED, Hafsi Ch, Guidi L, Navari-Izzo F (2009) The effect of salinity on photosynthetic activity in potassium-deficient barley species. J Plant Physiol 166:1968–1981

    Google Scholar 

  • Johnson GN (2005) Cyclic electron transport in C3 plants: fact or artefact? J Exp Bot 56:407–416

    PubMed  CAS  Google Scholar 

  • Joliot P, Joliot A (2006) Cyclic electron flow in C3 plants. Biochim Biophys Acta 1757:362–368

    PubMed  CAS  Google Scholar 

  • Joёt T, Genty B, Josse EM, Kuntz M, Cournac L, Peltier G (2002) Involvement of a plastid terminal oxidase in plastoquinone oxidation as evidenced by expression of the Arabidopsis thaliana enzyme in tobacco. J Biol Chem 277:31623–31630

    Google Scholar 

  • Kant S, Kant P, Raveh E, Barak S (2006) Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. Plant Cell Environ 29:1220–1234

    PubMed  CAS  Google Scholar 

  • Kefu Z, Hai F, San Z, Jie S (2003) Study on the salt and drought tolerance of Suaeda salsa and Kalanchoë daigremontiana under iso-osmotic salt and water stress. Plant Sci 165:837–844

    Google Scholar 

  • Keiller DR, Slocombe SP, Cockburn W (1994) Analysis of chlorophyll a fluorescence in C3 and CAM forms of Mesembryanthemum crystallinum. J Exp Bot 45:325–334

    CAS  Google Scholar 

  • Kim K, Portis AR Jr (2006) Kinetic analysis of the slow inactivation of Rubisco during catalysis: effects of temperature, O2 and Mg++. Photosynth Res 87:195–204

    PubMed  CAS  Google Scholar 

  • Klughammer C, Schreiber U (1994) An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700+-absorbance changes at 830 nm. Planta 192:261–268

    CAS  Google Scholar 

  • Li W, Zhang Ch LQ, Wen X, Lu C (2011) The combined effect of salt stress and heat shock on proteome profiling in Suaeda salsa. J Plant Physiol 168:1743–1752

    PubMed  CAS  Google Scholar 

  • Lu C, Qiu N, Lu Q (2003a) Photoinhibition and the xanthophyll cycle are not enhanced in the salt-acclimated halophyte Artimisia anethifolia. Physiol Plant 118:532–537

    CAS  Google Scholar 

  • Lu C, Qiu N, Wang B, Zhang J (2003b) Salinity treatment shows no effects on photosystem II photochemistry, but increases the resistance of photosystem II to heat stress in halophyte Suaeda salsa. J Exp Bot 54:851–860

    PubMed  CAS  Google Scholar 

  • Lüttge U (2000) Light-stress and crassulacean acid metabolism. Phyton 40:65–82

    Google Scholar 

  • Lüttge U (2004) Ecophysiology of crassulacean acid metabolism (CAM). Ann Bot 93:629–652

    PubMed  Google Scholar 

  • M’rah S, Ouerghi Z, Berthomieu C, Havaux M, Jungas C, Hajji M, Grignon C, Lachaâl M (2006) Effects of NaCl on the growth, ion accumulation and photosynthetic parameters of Thellungiella halophila. J Plant Physiol 163:1022–1103

    PubMed  Google Scholar 

  • M’rah S, Ouerghi Z, Eymery F, Rey P, Hajji M, Grignon C, Lachaâl M (2007) Efficiency of biochemical protection against toxic effects of accumulated salt differentiates Thellungiella halophila from Arabidopsis thaliana. J Plant Physiol 164:375–384

    PubMed  Google Scholar 

  • Ma S, Gong Q, Bohnert HJ (2006) Dissecting salt stress pathways. J Exp Bot 57:1097–1107

    PubMed  CAS  Google Scholar 

  • Martinez J-P, Kinet J-M, Bajji M, Lutts S (2005) NaCl alleviates polyethylene glycol-induced water stress in the halophyte species Atriplex halimus L. J Exp Bot 56:2421–2431

    PubMed  CAS  Google Scholar 

  • Mateos-Naranjo E, Redondo-Gómez S, Álvarez R, Cambrollé J, Gandullo J, Figueroa ME (2010) Synergic effect of salinity and CO2 enrichment on growth and photosynthetic responses of the invasive cordgrass Spartina densiflora. J Exp Bot 61:1643–1654

    PubMed  CAS  PubMed Central  Google Scholar 

  • Miller G, Suzuki N, Rizhsky L, Hegie A, Koussevitzky S, Mittler R (2007) Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and a response to abiotic stress. Plant Physiol 144:1777–1785

    PubMed  CAS  PubMed Central  Google Scholar 

  • Miszalski Z, Ślesak I, Niewiadomska E, Baczek-Kwinta R, Lüttge U, Ratajczak R (1998) Subcellular localization and stress responses of superoxide dismutase isoforms from leaves in the C3-CAM intermediate halophyte Mesembryanthemum crystallinum L. Plant Cell Environ 21:169–179

    CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    PubMed  CAS  Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2003) Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tomato species Lycopersicon pennellii. Plant Cell Environ 26:845–856

    PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    PubMed  CAS  Google Scholar 

  • Nelson N, Yocum CF (2006) Structure and function of photosystems I and II. Annu Rev Plant Biol 57:521–565

    PubMed  CAS  Google Scholar 

  • Niewiadomska E, Bilger W, Gruca M, Mulisch M, Miszalski Z, Krupinska K (2011) CAM-related changes in chloroplastic metabolism of Mesembryanthemum crystallinum L. Planta 233:275–285

    PubMed  CAS  PubMed Central  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359

    PubMed  CAS  Google Scholar 

  • Pagliano C, La Rocca N, Andreucci F, Deák Z, Vass I, Rascio N, Barbato R (2009) The extreme halophyte Salicornia veneta is depleted of the extrinsic PsbQ and PsbP proteins of the oxygen-evolving complex without loss of functional activity. Ann Bot 103:505–515

    PubMed  CAS  PubMed Central  Google Scholar 

  • Paramonova NV, Shevyakova NI, Kuznetsov VV (2004) Ultrastructure of chloroplasts and their storage inclusions in the primary leaves of Mesembryanthemum crystallinum affected by putrescine and NaCl. Russ J Plant Physiol 51:86–96

    CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    PubMed  CAS  Google Scholar 

  • Parker R, Flowers TJ, Moore AL, Harpham NVJ (2006) An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. J Exp Bot 57:1109–1118

    PubMed  CAS  Google Scholar 

  • Parry MAJ, Keys AJ, Madgwick PJ, Carmo-Silva AE, Andralojc PJ (2008) Rubisco regulation: a role for inhibitors. J Exp Bot 59:1569–1580

    PubMed  CAS  Google Scholar 

  • Pfannschmidt T (2003) Chloroplast redox signals: how photosynthesis controls its own genes. Trends Plant Sci 8:33–41

    PubMed  CAS  Google Scholar 

  • Pfannschmidt T, Bräutigam K, Wagner R, Dietzel L, Schröter Y, Steiner S, Nykytenko A (2009) Potential regulation of gene expression in photosynthetic cells by redox and energy state: approaches towards better understanding. Ann Bot 103:599–607

    PubMed  CAS  PubMed Central  Google Scholar 

  • Qiu N, Lu Q, Lu C (2003) Photosynthesis, photosystem II efficiency and the xanthophyll cycle in the salt-adapted halophyte Atriplex centralasiatica. New Phytol 159:479–486

    CAS  Google Scholar 

  • Qiu-Fang Z, Yuan-Yuan L, Cai-Hong P, Cong-Ming L, Bao-Shan W (2005) NaCl enhances thylakoid-bound SOD activity in the leaves of C3 halophyte Suaeda salsa L. Plant Sci 168:423–430

    Google Scholar 

  • Rabhi M, Giuntini D, Castagna A, Remorini D, Baldan B, Smaoui A, Abdelly C, Ranieri A (2010) Sesuvium portulacastrum maintains adequate gas exchange, pigment composition, and thylakoid proteins under moderate and high salinity. J Plant Physiol 167:1336–1341

    PubMed  CAS  Google Scholar 

  • Ramani B, Reeck T, Debez A, Stelzer R, Huchzermeyer B, Schmidt A, Papenbrock J (2006) Aster tripolium L. and Sesuvium portulacastrum L.: two halophytes, two strategies to survive in saline habitats. Plant Physiol Biochem 44:395–408

    PubMed  CAS  Google Scholar 

  • Redondo-Gómez S, Wharmby C, Castillo JM, Mateos-Naranjo E, Luque CJ, de Cires A, Luque T, Davy AJ, Figueroa ME (2006) Growth and photosynthetic responses to salinity in an extreme halophyte, Sarcocornia fruticosa. Physiol Plant 128:116–124

    Google Scholar 

  • Redondo-Gómez S, Mateos-Naranjo E, Figueroa ME, Davy AJ (2010) Salt stimulation of growth and photosynthesis in an extreme halophyte, Arthrocnemum macrostachyum. Plant Biol 12:79–87

    PubMed  Google Scholar 

  • Rosso D, Ivanov AG, Fu A, Geisler-Lee J, Hendrickson L, Geisler SG, Krol M, Hurry V, Rodermel SR, Maxwell DP, Hüner NPA (2006) IMMUTANS does not act as a stress-induced safety valve in the protection of the photosynthetic apparatus of Arabidopsis during steady-state photosynthesis. Plant Physiol 142:574–585

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rumeau D, Peltier G, Cournac G (2007) Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant Cell Environ 30:1041–1051

    PubMed  CAS  Google Scholar 

  • Sacksteder CA, Kramer DM (2000) Dark-interval relaxation kinetics (DIRK) of absorbance changes as a quantitative probe of steady state electron transfer. Photosynth Res 66:145–158

    PubMed  CAS  Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171

    PubMed  CAS  Google Scholar 

  • Scheibe R, Backhausen JE, Emmerlich V, Holtgrefe S (2005) Strategies to maintain redox homeostasis during photosynthesis under changing conditions. J Exp Bot 56:1481–1489

    PubMed  CAS  Google Scholar 

  • Scheller HV, Haldrup A (2005) Photoinhibition of photosystem I. Planta 221:5–8

    PubMed  CAS  Google Scholar 

  • Schöttler MA, Kirchhoff H, Siebke K, Weis E (2002) Metabolic control of photosynthetic electron transport in crassulacean acid metabolism-induced Mesembryanthemum crystallinum. Funct Plant Biol 29:697–705

    Google Scholar 

  • Seidler A (1996) The extrinsic polypeptides of Photosystem II. Biochim Biophys Acta 1277:35–60

    PubMed  Google Scholar 

  • Sengupta S, Majumder AL (2009) Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: a physiological and proteomic approach. Planta 229:911–929

    PubMed  CAS  Google Scholar 

  • Ślesak I, Karpinska B, Surówka E, Miszalski Z, Karpinski S (2003) Redox changes in the chloroplast and hydrogen peroxide are essential for regulation of C3–CAM transition and photooxidative stress responses in the facultative CAM plant Mesembryanthemum crystallinum L. Plant Cell Physiol 44:573–581

    PubMed  Google Scholar 

  • Sobhanian H, Motamed N, Jazii FR, Nakamura T, Komatsu S (2010) Salt stress induced differential proteome and metabolome response in the shoots of Aeluropus lagopoides, a halophyte C4 monocot plant. J Proteome Res 9:2882–2897

    PubMed  CAS  Google Scholar 

  • Stepien P, Johnson GN (2009) Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: role of the plastid terminal oxidase as an alternative electron sink. Plant Physiol 149:1154–1165

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stepien P, Klobus G (2005) Antioxidant defense in the leaves of C3 and C4 plants under salinity stress. Physiol Plant 125:31–40

    CAS  Google Scholar 

  • Streb P, Josse E-M, Gallouët E, Baptist F, Kuntz M, Cornic G (2005) Evidence for alternative electron sinks to photosynthetic carbon assimilation in the high mountain plant species Ranunculus glacialis. Plant Cell Environ 28:1123–1135

    CAS  Google Scholar 

  • Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu J-K, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135:1697–1709

    PubMed  CAS  PubMed Central  Google Scholar 

  • Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182

    PubMed  CAS  Google Scholar 

  • Takahashi S, Milward SE, Fan D-Y, Chow WS, Badger MR (2009) How does cyclic electron transport flow alleviate photoinhibition in Arabidopsis. Plant Physiol 149:1560–1567

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tikkanen M, Aro EM (2012) Thylakoid protein phosphorylation in dynamic regulation of photosystem II in higher plants. Biochim Biophys Acta 1817:232–238

    PubMed  CAS  Google Scholar 

  • Tsugane K, Kobayashi K, Niwa Y, Ohba Y, Wada K, Kobayashia H (1999) A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell 11:1195–1206

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Methods Enzymol 428:419–438

    PubMed  CAS  Google Scholar 

  • Tyystjärvi E (2008) Photoinhibition of photosystem II and photodamage of the oxygen evolving manganese cluster. Coord Chem Rev 252:361–376

    Google Scholar 

  • Valderrama R, Corpas FJ, Carreras A, Gómez-Rodríguez MV, Chaki M, Pedrajas JR, Fernández-Ocaña A, Del Río LA, Barroso JB (2006) The dehydrogenase-mediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants. Plant Cell Environ 29:1449–1459

    PubMed  CAS  Google Scholar 

  • Verslues PE, Batelli G, Grillo S, Agius F, Kim YS, Zhu J, Agarwal M, Katiyar-Agarwal S, Zhu J-K (2007) Interaction of SOS2 with nucleoside diphosphate kinase 2 and catalases reveals a point of connection between salt stress and H2O2 signaling in Arabidopsis thaliana. Mol Cell Biol 27:7771–7780

    PubMed  CAS  PubMed Central  Google Scholar 

  • Voss I, Koelmann M, Wojtera J, Holtgrefe S, Kitzmann C, Backhausen JE, Scheibe R (2008) Knockout of major leaf ferredoxin reveals new redox-regulatory adaptations in Arabidopsis thaliana. Physiol Plant 133:584–598

    PubMed  CAS  Google Scholar 

  • Wang Y, Meng Y-L, Ishikawa H, Hibino T, Tanaka Y, Nii N, Takabe T (1999) Photosynthetic adaptation to salt stress in three-color leaves of a C4 plant Amaranthus tricolor. Plant Cell Physiol 40:668–674

    CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    PubMed  CAS  Google Scholar 

  • Wen X, Qiu N, Lu Q, Lu C (2005) Enhanced thermotolerance of photosystem II in salt-adapted plants of the halophyte Artemisia anethifolia. Planta 220:486–497

    PubMed  CAS  Google Scholar 

  • Wiciarz M, Gubernator B, Kruk J, Niewiadomska E. (2014) Enhanced chloroplastic generation of H2O2 in stress-resistant Thellungiella salsuginea in comparison to Arabidopsis thaliana. Physiol Plant (2014). doi:10.1111/ppl.12248

    Google Scholar 

  • Wingler A, Quick WP, Bungard RA, Bailey KJ, Lea PJ, Leegood RC (1999) The role of photorespiration during drought stress: an analysis utilizing barley mutants with reduced activities of photorespiratory enzymes. Plant Cell Environ 22:361–373

    CAS  Google Scholar 

  • Winter K, Holtum JAM (2007) Environment or development? Lifetime net CO2 exchange and control of the expression of crassulacean acid metabolism in Mesembryanthemum crystallinum. Plant Physiol 143:98–107

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yang X, Lu C (2005) Photosynthesis is improved by exogenous glycine betaine in salt-stressed maize plants. Physiol Plant 124:343–352

    CAS  Google Scholar 

  • Yu J, Chen S, Zhao Q, Wang T, Yang C, Diaz C, Sun G, Dai S (2011) Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora. J Proteome Res 10:3852–3870

    PubMed  CAS  Google Scholar 

  • Zhang H, Han B, Wang T, Chen S, Li H, Zhang Y, Dai S (2012) Mechanisms of plant salt response: insights from proteomics. J Proteome Res 11:49–67

    PubMed  Google Scholar 

  • Zhu J-K (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to anonymous reviewers for their comments on the text, and to the Polish National Science Center project 2011/03/B/NZ9/01619 for a financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Niewiadomska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Niewiadomska, E., Wiciarz, M. (2015). Adaptations of Chloroplastic Metabolism in Halophytic Plants. In: Lüttge, U., Beyschlag, W. (eds) Progress in Botany. Progress in Botany, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-319-08807-5_7

Download citation

Publish with us

Policies and ethics