Skip to main content

VillageLink: A Channel Allocation Technique for Wide-Area White Space Networks

  • Chapter
  • First Online:
White Space Communication

Abstract

White spaces promise to revolutionize the way wireless connectivity is delivered over wide areas. However, large-scale white space networks face the problem of allocating channels to multiple contending users in the wide white space band. To tackle the issue, we first examine wireless propagation in a long-distance outdoor white space testbed and find that a complex combination of free-space loss and antenna effects impacts transmission in white spaces. Thus, a need arises for a strategy that goes beyond simple channel utilization balancing, and uses frequency probing to profile channels according to their propagation properties. We devise VillageLink, a Gibbs sampling-based method that optimizes channel allocation in a distributed manner with a minimum number of channel switching events. Through extensive simulations we demonstrate that VillageLink results in a significant capacity improvement over alternative solutions.

This chapter is an extension of V. Pejovic, D. L. Johnson, M. Zheleva, E. M. Belding and A. Lysko, VillageLink: Wide-Area Wireless Coverage, COMSNETS’14, Bangalore, India, January 2014.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.ettus.com.

  2. 2.

    http://gnuradio.org/.

  3. 3.

    We envision OFDMA channel sharing among the CPEs of a BS. Such an approach is mandated by IEEE 802.16 and IEEE 802.22 standards. We leave the details of subcarrier allocation as the future work, and in this paper concentrate solely on channel allocation at the BS level.

  4. 4.

    Convergence in variation describes convergence of an array of samples to a probability distribution and is defined in [1], p. 128.

  5. 5.

    http://www.hdtvprimer.com/ANTENNAS/comparing.html.

  6. 6.

    www.nec2.org.

References

  1. Bremaud, P.: Markov Chains, Gibbs Fields. Monte Carlo Simulation and Queues. Springer, New York (1999)

    Book  MATH  Google Scholar 

  2. Cordeiro, C., Challapali, K., Birru, D., Manor, B., Diego, S.: IEEE 802.22: an introduction to the first wireless standard based on cognitive radios. J. commun. 1(1), 38–47 (2006)

    Google Scholar 

  3. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)

    Article  MATH  Google Scholar 

  4. Greenstein, L.J., Erceg, V., Yeh, Y.S., Clark, M.V.: A new path-gain/delay-spread propagation model for digital cellular channels. IEEE Trans. Veh. Technol. 46(2), 477–485 (1997)

    Article  Google Scholar 

  5. Hajek, B.: Cooling schedules for optimal annealing. Math. Oper. Res. 13, 311–319 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  6. Harrison, K., Mishra, S. M., Saha. A.: How much white-space capacity is there? In: DySpan’10, Singapore (2010)

    Google Scholar 

  7. ITU World Telecommunication/ICT Indicators Database. International Telecommunication Union (2013)

    Google Scholar 

  8. Jain, R., Chiu, D.M., Hawe, W.R.: A Quantitative Measure of Fairness and Discrimination for Resource Allocation in Shared Computer System. Digital Equipment Corporation, Eastern Research Laboratory (1984)

    Google Scholar 

  9. Kauffmann, B., Baccelli, F., Chaintreau, A., Mhatre, V., Papagiannaki, K., Diot, C.: Measurement-based self organization of interfering 802.11 wireless access networks. In: INFOCOM’07, Anchorage (2007)

    Google Scholar 

  10. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ma, M., Tsang, D.H.K.: Joint design of spectrum sharing and routing with channel heterogeneity in cognitive radio networks. Phys. Commun. 2(1–2), 127–137 (2009)

    Article  Google Scholar 

  12. Masonta, M., Johnson, D.L., Mzyece, M.: The white space opportunity in Southern Africa: measurements with meraka cognitive radio platform. In: e-Infrastructure and e-Services for Developing Countries, Volume 92 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, pp. 64–73. Springer, Heidelberg (2012)

    Google Scholar 

  13. Mhatre, V., Papagiannaki, K., Baccelli, F.: Interfernece mitigation through power control in high density 802.11 WLANs. In: INFOCOM’07, Anchorage (2007)

    Google Scholar 

  14. Mishra, S., Hwang, J., Filippini, D., Moazzami, R., Subramanian, L., Du, T.: Economic analysis of networking technologies for rural developing regions. Lect. Notes Comput. Sci. 3828, 184–194 (2005)

    Article  Google Scholar 

  15. Moscibroda, T., Wattenhofer, R., Weber, Y.: Protocol design beyond graph-based models. In: HotNets’06, Irvine (2006)

    Google Scholar 

  16. Nychis, G., Hottelier, T., Yang, Z., Seshan, S., Steenkiste, P.: Enabling MAC protocol implementations on software-defined radios. In: NSDI’09, Boston (2009)

    Google Scholar 

  17. Ramachandran, K.N., Belding, E.M., Almeroth, K.C., Buddhikot, M.M.: Interference-aware channel assignment in multi-radio wireless mesh networks. In: INFOCOM’06, Barcelona (2006)

    Google Scholar 

  18. Raman, B., Chebrolu, K.: Design and evaluation of a new MAC protocol for long-distance 802.11 mesh networks. In: MobiCom’05, Cologne (2005)

    Google Scholar 

  19. Sheth, A., Nedevschi, S., Patra, R., Surana, S., Subramanian, L., Brewer, E.: WiLDNet: design and implementation of high performance WiFi based long distance networks. In: NSDI, Anchorage (2007)

    Google Scholar 

  20. Stojmenovic, I.: Handbook of Wireless Networks and Mobile Computing. Wiley-Interscience, New York (2002)

    Google Scholar 

  21. Surana, S., Patra, R., Nedevschi, S., Ramos, M., Subramanian, L., Ben-David, Y., Brewer, E.: Beyond pilots: Keeping rural wireless networks alive. In: NSDI, San Francisco (2008)

    Google Scholar 

  22. Sydell, L.: FCC Eyes Broadband For Indian Reservations. http://www.npr.org/templates/story/story.php?storyId=128004928 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Lloyd Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pejovic, V., Johnson, D.L., Zheleva, M., Belding, E.M., Lysko, A. (2015). VillageLink: A Channel Allocation Technique for Wide-Area White Space Networks. In: Mishra, A., Johnson, D. (eds) White Space Communication. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-08747-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08747-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08746-7

  • Online ISBN: 978-3-319-08747-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics