Skip to main content

Diamond Biosensors

  • Chapter
  • First Online:
Carbon for Sensing Devices

Abstract

Diamond is wide band gap semiconductor presenting many extreme properties. It is notably known as the most stable material with the highest chemical inertness, the highest mechanical hardness and the highest thermal conductivity. Since the mid 1970s it has been possible to grow synthetic diamond by several methods. High Pressure High Temperature techniques that mimic the diamond formation in the earth’s crust were first developed. Then Chemical Vapour Deposition (CVD) methods enable diamond growth at laboratory scale as well as the control the P-type and N-type doping of diamond. Besides, it is possible to tune the diamond electrical properties form very resistive to metallic thanks to the P-type doping with boron. Current achievements have enabled the development of diamond sensors that can operate in extreme conditions. After being used for its mechanical and thermal properties, diamond was considered for chemical sensing. In fact the chemical stability and the close-to-metallic conductivity of diamond make it a powerful tool for electrochemical detection in various environment. Furthermore, the diamond is an ideal substrate for surface functionalization thanks to the wide and very known carbon based chemistry. Such a feature combined to the outstanding electrochemical properties of the diamond electrodes have enable the production of very efficient biosensors and biochips. Diamond is also an interesting sensor for medical imaging. Its carbon nature, well tolerated by living tissues, are actually very useful for its use as a biosensor capable of working in contact with bio-environments as well as real neuronal interfaces. Both those topics will be discussed in details in the following pages. In a first part an overview on electrochemical based biosensors and their performance is described. Then in a second half of the chapter, novel applications where diamond is directly used as an electrode for neural tissue interfacing is presented in details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. JE. Graebner, S. Jin, GW. Kammlott, JA. Herb & CF. Gardinier, Large anisotropic thermal conductivity in synthetic diamond films, Nature 359, 401–403, 1992.

    Article  Google Scholar 

  2. JPF. Sellschop 1979 The Properties of Diamond ed J E Field (New York: Academic).

    Google Scholar 

  3. P. Hess, The Mechanical properties of various chemical vapor deposition diamond structures compared to the ideal single crystal, J Appl Phys, 111 (5), 051101, 2012.

    Article  Google Scholar 

  4. Yu. Borzdov, Yu. Pal’yanov, I. Kupriyanov, V. Gusev, A. Khokhryakov, A. Sokol, A. Efremov, HPHT synthesis of diamond with high nitrogen content from an Fe3N–C system, Diam and Relat Mater 11 (2002) 1863–1870.

    Article  Google Scholar 

  5. FP. Bundy, HT. Hall, HM. Strong, RH. Wentorf Jr, Man-made Diamonds, nature 176, 51–55 (1955).

    Article  Google Scholar 

  6. RF. Davis, JT. Glass, G. Lucovski, KJ. Bachman, Growth, characterization and device development in monocrystalline diamond films, Annual Report to Office of Naval research, 1987.

    Google Scholar 

  7. Q. Liang et al., Recent advances in high-growth rate single crystal CVD diamond, Diam and Relat Mater, 18, 5–8, pp 698–703 (2009).

    Google Scholar 

  8. JJ Gracio, QH Fan, JC Madaleno, Diamond growth by chemical vapour deposition. J. Phys. D: Appl. Phys, 43, 2010.

    Google Scholar 

  9. RS. Balmer et al., Chemical vapour deposition synthetic diamond: materials, technology and applications, Journal of Physics: Condensed Matter 21 (2009) 364221.

    Google Scholar 

  10. S. Koiszumi, T. Teraji, H. Kanda, Phosphorus-doped chemical vapor deposition of diamond, Diam and Relat Mater, 9 (3–6); 935–940, 2000.

    Article  Google Scholar 

  11. OA Williams, M. Nesldek, M. Daenen, S. Michaelson, A. Hoffman, E. Oswawa, Growth, electronic properties and application of nanodiamond, Diam and Relat Mater, 17 (7–10);1080–1088 (2008).

    Article  Google Scholar 

  12. R. Kalsih, Doping of Diamond, Carbon, 37 (5); 781–785, 1999.

    Article  Google Scholar 

  13. E. Gheeraert, P. Gonon, A. Deneuville, L. Abello, G. Lucazeau, effect of boron incorporation on the quality of MPCVD diamond films, Diam and Relat Mater, 2 (5–7); 1993.

    Google Scholar 

  14. T. Klein, P. Achatz, J. Kacmarcik, C. Marcenat, J. Marcus, E. Bustarret et al. Metal-insulator transition and superconductivity in boron-doped diamond, Phys Rev B, 165313, 2007.

    Google Scholar 

  15. W. Adam, E. Berdermann, P. Bergonzo, W. De Boer, R. Bogani, E. Borchi et al. The development of diamond tracking detectors for the LHC, Nuc. Inst. and Meth. in Phys. Res, Section A, 514 (1–3);79–86, 2003.

    Article  Google Scholar 

  16. P. Bergonzo, A. Bambilla, D. Tromson, C. Mer, B. Guizard, RD. Marshall et al. CVD diamond for nuclear detections applications, Nuc. Inst. and Meth. in Phys. Res, Section A, 476 (3); 694–700, 2002.

    Article  Google Scholar 

  17. P. Bergonzo, A. Brambilla, D. Tromson, C. Mer, C. Hordequin, B. Guizard et al. Diamond as a tool for synchrotron radiation monitoring: beam position, profile, and temporal distribution, Diam. and Relat. Mater, 9 (3–6); 960–964, 2000.

    Google Scholar 

  18. E. Vanhove et al., Phys. Status Solidi, vol. 204, no. 9, pp. 2931–2939, Sep. 2007.

    Google Scholar 

  19. A. Grill, Diam. Relat. Mater., vol. 12, pp. 166–170, 2003.

    Google Scholar 

  20. L. Tang et al., Biomaterials, vol. 16, no. 6, pp. 483–8, Apr. 1995.

    Google Scholar 

  21. P. Ariano et al., Diam. Relat. Mater., vol. 14, no. 3–7, pp. 669–674, Mar. 2005.

    Google Scholar 

  22. C. G. Specht et al., Biomaterials, vol. 25, no. 18, pp. 4073–8, Aug. 2004.

    Google Scholar 

  23. M. Amaral et al., J. Nanomater., vol. 894352, 2008.

    Google Scholar 

  24. W. Okrój et al., Diam. Relat. Mater., vol. 15, no. 10, pp. 1535–1539, Oct. 2006.

    Google Scholar 

  25. Y.-C. Chen et al., Biomaterials, vol. 30, no. 20, pp. 3428–35, Jul. 2009.

    Google Scholar 

  26. A. A. Rodrigues et al., Diam. Relat. Mater., vol. 19, no. 10, pp. 1300–1306, Oct. 2010.

    Google Scholar 

  27. P. Bergonzo et al., IRBM, vol. 32, pp. 91–94, 2011.

    Google Scholar 

  28. T. Livache et al., J. Pharm. Biomed. Anal., vol. 32, no. 4–5, pp. 687–696, Aug. 2003.

    Google Scholar 

  29. P. Sonthalia et al., Anal. Chim. Acta, vol. 522, no. 1, pp. 35–44, Sep. 2004.

    Google Scholar 

  30. B. Baur et al., Langmuir, vol. 24, no. 17, pp. 9898–9906, 2008.

    Google Scholar 

  31. A. Bongrain et al., Langmuir, vol. 27, no. 19, pp. 12226–34, Oct. 2011.

    Google Scholar 

  32. E. V. Jacques de sanoit, Pat. PCT/EP2008/057032, 2013.

    Google Scholar 

  33. R. G. C. M. E. Hyde, C.M. Welch, C.E. Banks, Anal. Sci., vol. 21, no. 12, pp. 1421–1430, 2005.

    Google Scholar 

  34. M. C. Granger et al., Anal. Chim. Acta, vol. 397, no. 1–3, pp. 145–161, Oct. 1999.

    Google Scholar 

  35. M. Hupert et al., Diam. Relat. Mater., vol. 12, pp. 1940–1949, 2003.

    Google Scholar 

  36. T. N. Rao et al., J. Electrochem. Soc., vol. 148, no. 3, pp. 112–117, 2001.

    Google Scholar 

  37. C. Provent et al., Electrochim. Acta, vol. 49, no. 22–23, pp. 3737–3744, Sep. 2004.

    Google Scholar 

  38. A. Chatterjee et al., Diam. Relat. Mater., vol. 11, no. 3–6, pp. 646–650, Mar. 2002.

    Google Scholar 

  39. J. S. Foord et al., Phys. Chem. Chem. Phys., vol. 7, pp. 2787–2792, 2005.

    Google Scholar 

  40. M. Rievaj, Sensors Actuators B. Chem., vol. 181, pp. 294–300, 2013.

    Google Scholar 

  41. M. Wei et al., Microchim. Acta, vol. 181, pp. 121–127, 2014.

    Google Scholar 

  42. L. Codognoto et al., Diam. Relat. Mater., vol. 11, no. 9, pp. 1670–1675, Sep. 2002.

    Google Scholar 

  43. E. Fortin et al., Bioelectrochemistry, vol. 63, no. 1–2, pp. 303–6, Jun. 2004.

    Google Scholar 

  44. K. Kalcher, Sensors Actuators B. Chem., vol. 194, pp. 332–342, 2014.

    Google Scholar 

  45. M. D. Koppang et al., Anal. Biochem., vol. 71, no. 16, pp. 1188–1195, 1999.

    Google Scholar 

  46. J. de Sanoit et al., Electrochim. Acta, vol. 54, no. 24, pp. 5688–5693, Oct. 2009.

    Google Scholar 

  47. L. Svorc et al., Diam. Relat. Mater., vol. 42, pp. 1–7, 2014.

    Google Scholar 

  48. B. V Sarada et al., Anal. Chem., vol. 72, no. 7, pp. 1632–1638, 2000.

    Google Scholar 

  49. M. Cristina et al., Sensors Actuators B. Chem., vol. 188, pp. 263–270, 2013.

    Google Scholar 

  50. P. U. Arumugam et al., Appl. Phys. Lett., vol. 102, p. 253107, 2013.

    Google Scholar 

  51. S. Siddiqui et al., Biosens. Bioelectron., vol. 35, no. 1, pp. 284–290, 2012.

    Google Scholar 

  52. R. Andreozzi et al., Catal. Letters, vol. 53, pp. 51–59, 1999.

    Google Scholar 

  53. J. Iniesta et al., Electrochim. Acta, vol. 46, pp. 3573–3578, 2001.

    Google Scholar 

  54. M. A. Rodrigo et al., J. Electrochem. Soc., vol. 148, no. 5, pp. 60–64, 2001.

    Google Scholar 

  55. P. Cañizares et al., J. Electrochem. Soc., vol. 154, no. 11, pp. 165–171, 2007.

    Google Scholar 

  56. A. Kraft et al., J. Hazard. Mater., vol. 103, no. 3, pp. 247–261, Oct. 2003.

    Google Scholar 

  57. B. Boye et al., Electrochim. Acta, vol. 51, no. 14, pp. 2872–2880, Mar. 2006.

    Google Scholar 

  58. A. Perret et al., Diam. Relat. Mater., vol. 8, pp. 820–823, 1999.

    Google Scholar 

  59. C. Lévy-Clément et al., Diam. Relat. Mater., vol. 12, no. 3–7, pp. 606–612, Mar. 2003.

    Google Scholar 

  60. T. Furuta et al., Diam. Relat. Mater., vol. 13, pp. 2016–2019, 2004.

    Google Scholar 

  61. A. Cano et al., Chem. Eng. J., vol. 211–212, pp. 463–469, 2012.

    Google Scholar 

  62. A. Cano et al., Electrochem. commun., vol. 13, no. 11, pp. 1268–1270, 2011.

    Google Scholar 

  63. C. Agnès et al., IOP Conf. Ser. Mater. Sci. Eng., vol. 16, p. 012001, Nov. 2010.

    Google Scholar 

  64. W. Yang et al., Nat. Mater., vol. 2, no. 1, pp. 253–258, 2003.

    Google Scholar 

  65. G.-J. Zhang et al., Langmuir, vol. 22, no. 8, pp. 3728–34, Apr. 2006.

    Google Scholar 

  66. N. Yang et al., Angew. Chem. Int. Ed. Engl., vol. 47, no. 28, pp. 5183–5, Jan. 2008.

    Google Scholar 

  67. Y. Coffinier et al., Langmuir, vol. 23, no. 8, pp. 4494–7, Apr. 2007.

    Google Scholar 

  68. R. J. Hamers et al., Diam. Relat. Mater., vol. 20, no. 5–6, pp. 733–742, May 2011.

    Google Scholar 

  69. A. D. Radadia et al., Adv. Funct. Mater., vol. 21, pp. 1040–1050, 2011.

    Google Scholar 

  70. J. Wang et al., Diam. Relat. Mater., vol. 15, no. 2–3, pp. 279–284, Feb. 2006.

    Google Scholar 

  71. P. Villalba et al., Mater. Sci. Eng. C, vol. 31, no. 5, pp. 1115–1120, Jul. 2011.

    Google Scholar 

  72. H. Olivia et al., Electrochim. Acta, vol. 49, no. 13, pp. 2069–2076, May 2004.

    Google Scholar 

  73. A. Härtl et al., Nat. Mater., vol. 3, no. 10, pp. 736–42, Oct. 2004.

    Google Scholar 

  74. J. Rubio-Retama et al., Langmuir, vol. 22, no. 13, pp. 5837–42, Jun. 2006.

    Google Scholar 

  75. H. Kawarada, Surf. Sci. Rep., vol. 26, no. 7, pp. 205–206, 1996.

    Google Scholar 

  76. Y. Y. Un et al., J. Appl. Phys., vol. 37, no. 11, pp. 1293–1296, 1998.

    Google Scholar 

  77. X. Gao et al., J. Phys. Chem. C, vol. 112, no. 7, pp. 2487–2491, Feb. 2008.

    Google Scholar 

  78. P. Strobel et al., Nature, vol. 430, pp. 242–244, 2004.

    Google Scholar 

  79. D. Petrini et al., J. Phys. Chem. C, vol. 111, no. 37, pp. 13804–13812, Sep. 2007.

    Google Scholar 

  80. H. Kawarada et al., Phys. Status Solidi, vol. 208, no. 9, pp. 2005–2016, Sep. 2011.

    Google Scholar 

  81. D. Zhu et al., Nat. Mater., vol. 12, no. 6, pp. 1–6, Jun. 2013.

    Google Scholar 

  82. H. Kawarada et al., Phys. Status Solidi, vol. 185, no. 1, pp. 79–83, May 2001.

    Google Scholar 

  83. K.-S. Song et al., Jpn. J. Appl. Phys., vol. 43, no. No. 6B, pp. L814–L817, Jun. 2004.

    Google Scholar 

  84. K.-S. Song et al., Phys. Rev. E, vol. 74, no. 4, p. 041919, Oct. 2006.

    Google Scholar 

  85. S. Kuga et al., J. Am. Chem. Soc., vol. 130, no. 40, pp. 13251–63, Oct. 2008.

    Google Scholar 

  86. A. R. Ruslinda et al., Biosens. Bioelectron., vol. 40, no. 1, pp. 277–282, 2013.

    Google Scholar 

  87. O. Auciello et al., IEE Microw. Mag., pp. 61–75, 2007.

    Google Scholar 

  88. A. Bongrain et al., J. Micromechanics Microengineering, vol. 19, p. 074015, 2009.

    Google Scholar 

  89. A. Bongrain et al., Phys. Status Solidi, vol. 2083, no. 9, pp. 2078–2083, 2010.

    Google Scholar 

  90. R. Manai et al., Biosens. Bioelectron., vol. 60, pp. 311–317, 2014.

    Google Scholar 

  91. C. Blin et al., Adv. Opt. Mater., vol. 1, pp. 963–970, 2013.

    Google Scholar 

  92. E. Chevallier et al., Sensors Actuators B. Chem., vol. 154, no. 2, pp. 238–244, 2011.

    Google Scholar 

  93. E. Chevallier et al., Sensors Actuators B. Chem., vol. 151, no. 1, pp. 191–197, 2010.

    Google Scholar 

  94. J. G. Rodríguez-madrid et al., Sensors Actuators A. Phys., vol. 189, pp. 364–369, 2013.

    Google Scholar 

  95. V. Mortet, O. A. Williams, K. Haenen, Phys. Status Solidi, vol. 205, no. 5, pp. 1009–1020, 2008.

    Google Scholar 

  96. S. R. Pascal Mailley, Franck Omnes, Charles Agnes, Pat. PCT/FR2010/051399, 2010.

    Google Scholar 

  97. MB. Ahrens, JM. Li, MB. Orger, DN. Robson, AF. Schier, F. Engert et al. Brain-wide neuronal dynamics during motor adaptation in zebrafish, Nature 2012, 485; 471–477.

    Google Scholar 

  98. R. Homma, BJ Baker, L. Jin, O. Garaschuk, A. Konnerth, LB. Cohen, D. Zecevic, Wide-field and two-photon imaging of brain activity with voltage- and calcium-sensitive dyes, Phil. Trans. R. Soc. B 2009.

    Google Scholar 

  99. Y. LeChasseur, S. Dufour, G. Lavertu, C. Bories, M. Deschênes, R. Vallée, Y De Koninck, A microprobe for parallel optical and electrical recordings from single neurons in vivo, Nature Methods 2011, 8;319–325.

    Google Scholar 

  100. AR. Houwelin, M. Brech, Behavioural report of single neuron stimulation in somatosensory cortex, Nature 2007, 451; 65–68.

    Google Scholar 

  101. DJ. Bakkum, U. Frey, M. Radivojevic, TL. Russell, J. Müller, M. Fiscella, Tracking axonal action potential propagation on a high-density microelectrode array across hundreds of sites, Nat. Comm. 2013.

    Google Scholar 

  102. AL Benabid, P Pollak, C Gervason, and et al. Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet, 337:403–406, 1991.

    Article  Google Scholar 

  103. MI. Hariz, P. Blomstedt, L. Zrinzo. 1947 Deep brain stimulation between 1947 and 1987: the untold story. Neurosurgical Focus, 29(2):E1, 2010.

    Article  Google Scholar 

  104. MM. Lanotte, M. Rizzone, B. Bergamasco, and et al. Deep brain stimulation of the subthalamic nucleus: anatomical, neurophysiological, and outcome correlations with the effects of stimulation. J Neurol Neurosurg Psychiatry, 72:53–58, 2002.

    Article  Google Scholar 

  105. ED. Keefer, Barry R. Botterman, Mario I. Romero, Andrew F. Rossi, and Guenter W. Gross. Carbon nanotube coating improves neuronal recordings. Acta Neurochir Suppl, 106:337–341, 2010.

    Article  Google Scholar 

  106. R. van den Brand, J. Heutschi, Quentin Barraud, J. DiGiovanna, K. Bartholdi, M. Huerlimann et al. Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science, 336:1182–1185, 2012.

    Article  Google Scholar 

  107. N. Dominici, U. Keller, H. Vallery, L. Friedli, and R. Van Den Brand et al. Versatile robotic interface to evaluate, enable and train locomotion and balance after neuromotor disorders. Nature Medecine, 2012.

    Google Scholar 

  108. M Heim, L Rousseau, S Reculusa, V Urbanova, C Mazzocco, S Joucla et al. Combined macro-mesoporous microelectrode arrays for low-noise extracellular recording of neural networks, J Neurophysiol 108:1793–1803, 2012.

    Article  Google Scholar 

  109. NA. Kotov, J.O. Winter, IP. Clements, E. Jan, BP. Timko, S. Campidelli, Nanomaterials for Neural Interfaces, Adv. Mater 2009, 21, 1–35.

    Article  Google Scholar 

  110. G. Baranauskas, E. Maggiolini, E. Castagnola, A. Ansaldo, A. Mazzoni, G. N. Angtozi, and A. Vato et al. Carbon nanotube composite coating of neural microelectrodes preferebtiallyimproves the multiunit signal to noise ratio. J. Neural Eng, 8, 2011.

    Google Scholar 

  111. V. Lovat, D. Pantarotto, L. Lagostena, B. Cacciari, M. Grandolfo, and M. Righi et al. Carbon nanotube substrates boost neuronal electrical signaling. Nano letters, 5(6):1107–1110,2005.

    Google Scholar 

  112. S. Venkatraman, J. Hendricks, Z. A. King, AJ. Sereno, S. Richardson-Burns, D. Martin, JM. Carmena, In Vitro and In Vivo Evaluation of PEDOT Microelectrodes for Neural Stimulation and Recording, IEEE Transactions On Neural Systems And Rehabilitation Engineering, 2011, 19(3); 307–315.

    Google Scholar 

  113. Seth J. Wilks, SM. Richardson-Burns, JL. Hendricks, DC. Martin, KJ. Otto, Poly(3,4-ethylenedioxythiophene) as a micro-neural interface material for electrostimulation, Frontiers in neuroengineering 2009, 2.

    Google Scholar 

  114. SF. Cogan, J. Ehrlich, TD. Plante, A. Smirnov, Do. B Shire, M. Gingerich, JF. Rizzo, Sputtered iridium oxide films for neural stimulation electrodes, Jour. Biomed. Mater. Res Part B 2009, 89(2);353–361.

    Article  Google Scholar 

  115. S. Gawad, M. Giugliano, M. Heuschkel, B. Wessling, H. Markram, U. Schnakenberg et al. Substrate arrays of iridium oxide microelectrodes for in vitro neuronal interfacing, frontiers in neural engineering 2009, 2.

    Google Scholar 

  116. G. Lind, CE. Linsmeier, J Schouenborg, The density difference between tissue and neural probes is a key factor for glial scarring. Sci. Rep. 3, 2942.

    Google Scholar 

  117. VS. Polikov, PA. Tresco, WM. Reichert, Response of brain tissue to chronically implanted neural electrodes, Journal of Neuroscience Methods 148 (2005) 1–18.

    Article  Google Scholar 

  118. Y. Zhong and RV Bellamkonda, Biomaterials for the central nervous system, J. R. Soc. Interface (2008) 5, 957–975.

    Article  Google Scholar 

  119. SF. Cogan, AA. Guzeliam, WF. Agnew, Ted G. H. Yuen Douglas B. McCreery, Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation, Journal of Neuroscience Methods 137 (2004); 141–150.

    Google Scholar 

  120. Lilach Bareket-Keren and Yael Hanein, Carbon nanotube-based multi electrode arrays for neuronal interfacing: progress and prospects, frontiers in neural circuit, 2012, 6.

    Google Scholar 

  121. RW. Griffith, DR. Humphrey, Long-term gliosis around chronically implanted platinum electrodes in the Rhesus macaque motor cortex, Neurosci Lett. 2006;406(1–2):81–6.

    Article  Google Scholar 

  122. ES. Ereifej, S. Khan, G. Newaz, J. Zhang, GW. Auner, PJ. VandeVord, Comparative assessment of iridium oxide and platinum alloy wires using an in vitro glial scar assay, Biomed Microdevices 2013, 15:917–924.

    Article  Google Scholar 

  123. S. Chen and MG. Allen, Extracellular matrix-based materials for neural interfacing, MRS Bulletin 2012, 37, 606–613.

    Article  Google Scholar 

  124. A. Mazzatenta, M. Giugliano, S. Campidelli, L. Gambazzi, L. Businaro, H. Makram et al. Interfacing neurons with carbon nanotubes: Electrical signal transfer and synaptic stimulation in cultured brain circuits. The Journal of Neuroscience, 27:6931–6936, 2007.

    Article  Google Scholar 

  125. CA Poland, R Duffin, I Kinloch, A Maynard, WAH Wallaceet et al. Carbon nanotubes introduced into the abdominal cavity of mice showasbestos-like pathogenicity in a pilot study. Nature Nanotechnology, 3:423–428, 2008.

    Article  Google Scholar 

  126. LT Hall. et al. High spatial and temporal resolution wide-field imaging of neuron activity using quantum NV-diamond. Sci. Rep. 2, 401, 2012.

    Google Scholar 

  127. G. Buzsáki, CA. Anastassiou and C. Koch The origin of extracellular fields and currents EEG, ECoG, LFP and spikes, Nature Review Neuroscience, 3, 407–20, 2012.

    Article  Google Scholar 

  128. MM. Heinricher, Principles of extracellular single unit recodring in Microelectrode recording in movement disorder surgery Zvi Israel, Kim J. Burchiel—New York 2011.

    Google Scholar 

  129. T. Schwartz, The thermodynamic functions of membrane physiology. In Biophysics and Physiology of Excitable Membrane. W. J. Adelman, Jr., editor. Van Nostrand Reinhold Co., New York. 47–95, 1971.

    Google Scholar 

  130. DC. Chang, Dependence of cellular potential on ionic concentrations, Biophysical journal, 43; 149–156, 1983.

    Google Scholar 

  131. N. Joye, A. Schmid, Y. Leblebici, Electrical modeling of the cell–electrode interface for recording neural activity from high-density microelectrode arrays, Neurocomputing, 73;250–9, 2009.

    Article  Google Scholar 

  132. V. Thakore, P. Molnar, and JJ. Hickman, An Optimization-Based Study of Equivalent Circuit Models for Representing Recordings at the Neuron–Electrode Interface; Transactions on biomedical engineering, 59, (8), 2012.

    Google Scholar 

  133. S.F. Cogan, Neural Stimulation and Recording electrodes, Annu. Rev. Biomed. Eng. 10;275–309; 2008.

    Article  Google Scholar 

  134. MLAV. Heien, MA. Johnson, and RM. Wightman, Resolving Neurotransmitters Detected by Fast-Scan Cyclic Voltammetry, Analytical chemistry, 76; 5697–5704, 2004.

    Google Scholar 

  135. H.W Ott, Noise Reduction techniques in electronic systems, 2nd Edition ed. New York: Wiley and Sons, pp 251.

    Google Scholar 

  136. J. Neuburger, T. Lenarz, A. Lesinski-Schiedat, A. Buchner Spontaneous increases in impedance following cochlear implantation: suspected causes and management Int J Audiol, 48 (5) (2009), pp. 233–239.

    Article  Google Scholar 

  137. S. Gosso, A. Marcantoni, M. Turturici, A. Pasquarelli, E. Carbone, V. Carabelli. Multi-purpose nanocrystalline boron-doped diamond MEAs for amperometric, potentiometric and pH recordings from excitable cells MEA meeting proceedings, 323–324, 2012.

    Google Scholar 

  138. V. Paget, J. A. Sergent, R. Grall, S. Altmeyer-Morel, H. A. Girard, T. Petit, C. Gesset, M. Mermoux, P. Bergonzo, J. C. Arnault, and S. Chevillard, Carboxylated nanodiamonds are neither cytotoxic nor genotoxic on liver, kidney, intestine and lung human cell lines, Nanotoxicology, 2013.

    Google Scholar 

  139. E. Perevedentseva, YC. Lin, M. Jani, CL. Cheng Biomedical applications of nanodiamonds in imaging and therapy Nanomedicine (2013) 8(12), 2041–2060.

    Google Scholar 

  140. A. Thalhammer, RJ. Edgington, LA. Cingolani, R. Schoepfer, RB. Jackman, The use of nanodiamond monolayer coatings to promote the formation of functional neuronal networks, Biomaterials 31; 2097–2104, 2010.

    Google Scholar 

  141. P.W. May, E.M. Regan, A. Taylor, J. Uney, A.D. Dick, J. McGeehan, Spatially controlling neuronal adhesion on CVD diamond, Diam and Relat Mater 23; 100–104, 2012.

    Google Scholar 

  142. A. Bendali, C. Agnès, S. Meffert, V. Forster, A. Bongrain, JC. Arnault, JA. Sahel, A. Offenhaüsser, P. Bergonzo, S. Picaud, Distinctive Glial and Neuronal Interfacing on Nanocrystalline Diamond, Plos One, 9(3); e92562, 2014.

    Article  Google Scholar 

  143. JM. Halpern, S. Xie, GP. Sutton, BT. Higashikubo, CA. Chestek, H. Lu, et al. Martin, Diamond electrodes for neurodynamic studies in Aplysia californica, Diam and Relat Mater 2006, 15; 183–187.

    Article  Google Scholar 

  144. J. Park, JJ. Galligan, GD. Fink, and GM. Swain, In Vitro Continuous Amperometry with a Diamond Microelectrode Coupled with Video Microscopy for Simultaneously Monitoring Endogenous Norepinephrine and Its Effect on the Contractile Response of a Rat Mesenteric Artery, Anal. Chem. 2006, 78, 6756–6764.

    Article  Google Scholar 

  145. A. Suzuki, TA. Ivandini, K. Yoshimi, A. Fujishima, G. Oyama, T. Nakazato et al. Fabrication, Characterization, and Application of Boron-Doped Diamond Microelectrodes for in Vivo Dopamine Detection, Anal. Chem., 2007, 79, 8608–8615.

    Article  Google Scholar 

  146. M. Pagels, CE. Hall, NS. Lawrence, A Meredith, TG. J. Jones et al. All-Diamond Microelectrode Array Device, Anal. Chem, 77, 3705–3708, 2005.

    Article  Google Scholar 

  147. K Peckova, J Barek Boron Doped Diamond Microelectrodes and Microelectrode Arrays in Organic Electrochemistry Curr. Org. electrochem. 15(17); 3014–3028, 2011.

    Article  Google Scholar 

  148. V. Carabelli, S. Gosso, A. Marcantoni, Y. Xu, E. Colombo, Z. Gao, E. Vittone, E. Kohn, A. Pasquarelli, E. Carbone, Nanocrystalline diamond microelectrode arrays fabricated on sapphire technology for high-time resolution of quantal catecholamine secretion from chromaffin cells, Biosensors and Bioelectronics 26; 92–98, 2010.

    Google Scholar 

  149. KL. Soh, WP. Kang, JL. Davidson, S. Basu, YM. Wong, DE. Cliffel, AB. Bonds, GM. Swain, Diamond-derived microelectrodes array for electrochemical analysis, Diam and Relat Mater, 13;2009–2015, 2004.

    Google Scholar 

  150. W. Smirnov, N. Yang, R. Hoffmann, J. Hees, H. Obloh, W. Muller-Sebert, and CE. Nebel, Integrated All-Diamond Ultramicroelectrode Arrays: Optimization of Faradaic and Capacitive Currents, Anal. Chem, 83;7438–7443.

    Google Scholar 

  151. Kiran R, Scorsone E, Mailley P, Bergonzo P, Quasi-real time quantification of uric acid in urine using boron doped diamond microelectrode with in situ cleaning, Anal. Chem, 84; 10207–10213, 2012.

    Google Scholar 

  152. HY. Chan, DM. Aslam, JA. Wiler, B. Casey, A Novel Diamond Microprobe for Neuro-Chemical and -Electrical Recording in Neural Prosthesis, JMEMS, 18(3); 511–521, 2009.

    Google Scholar 

  153. MW. Varney, DM. Aslam, A. Janoudi, HY. Chan, DH. Wang, Polycrystalline-Diamond MEMS Biosensors Including Neural Microelectrode-Arrays, Biosensors, 1; 118–133, 2011.

    Article  Google Scholar 

  154. R. Kiran, L. Rousseau, G. Lissorgues, E. Scorsone, A. Bongraink, B. Yvert, Serge Picaud, Pascal Mailley and Philippe Bergonzo, Multichannel Boron Doped Nanocrystalline Diamond Ultramicroelectrode Arrays: Design, Fabrication and Characterization, Sensors, 12; 7669–7681, 2012.

    Google Scholar 

  155. C. Hébert, J. Warnking, A. Depaulis, D. Eon, P. Mailley, F. Omnes, Microfabracition characterization and in vivo MRI compatibility of all diamond microelectrode array for neural interfacing, submitted to Material Science and engineering:C.

    Google Scholar 

  156. C. Hébert, E. Scorsone, A. Bendali, R. Kiran, M. Cottance, H.A. Girard, J. Degardin, E. Dubus, G. Lissorgues, L. Rousseau, S. Picaud, P. Bergonzo, Boron doped Diamond Biotechnology: from sensors to neurointerfaces, Faraday discussion 172, 2014.

    Google Scholar 

  157. K. Ganesan, DJ. Garrett, A. Ahnood, MN. Shivdasani, W. Tong, AM. Turnley et al. An all-diamond, hermetic electrical feedthrough array for a retinal prosthesis, Biomaterials 35;908–915, 2014.

    Google Scholar 

  158. P. Bergonzo, A. Bongrain, E. Scorsone, A. Bendali, L. Rousseau, and G. Lissorgues et al. Diamond-on-polymer microelectrode arrays fabricated using a chemical release transfer process. Micromechanical Systems, 20(4):867–875, 2011.

    Article  Google Scholar 

  159. AE. Hess, DM. Sabens, HB. Martin, and CA. Zorman, Diamond-on-Polymer Microelectrode Arrays Fabricated Using a Chemical Release Transfer Process, JMEMS, 20(4), 867–875, 2011.

    Google Scholar 

  160. Scorsone, E.; Saada, S.; Arnault, J. C.; Bergonzo, P. Journal of Applied Physics 2009, 106, 014908.

    Google Scholar 

  161. DH. Kim, J. Viventi et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics, Nature material 2010, 9; 511–517.

    Article  Google Scholar 

  162. Sommerhalder J, Rappaz B, de Haller R, Fornos AP, Safran AB and Pelizzone M, Vision Res 2004, 44, 1693–1706.

    Google Scholar 

  163. Djilas M, Oles C, Lorach H, Bendali A, Degardin J, Dubus E et al. Three-dimensional electrode arrays for retinal prostheses: modeling, geometry optimization and experimental validation. J Neural Eng 2011, 8, 046020.

    Article  Google Scholar 

  164. T. Watanabe, TK. Shimizu, Y. Tateyama, Y. Kim, M. Kawai, Y. Einaga, Giant electric double-layer capacitance of heavily boron-doped diamond electrode.

    Google Scholar 

  165. Kenji Yoshimi, Yuuki Naya, Naoko Mitani, Taisuke Kato, Masato Inoue, Shihoko Natori, et al Phasic reward responses in the monkey striatum as detected by voltammetry with diamond microelectrodes, Neuroscience Research 71 (2011) 49–62.

    Article  Google Scholar 

  166. Maybeck V, Edgington R, Bongrain A, Welch JO, Scorsone E, Bergonzo P, Jackman RB, Offenhäusser A., Boron-doped nanocrystalline diamond microelectrode arrays monitor cardiac action potentials. Adv Healthc Mater. 2014 Feb;3(2):283–9.

    Article  Google Scholar 

  167. Zrenner E, Bartz-Schmidt KU, Benav H, Besch D, Bruckmann A et al Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci, 2011, 278, 1489–1497.

    Article  Google Scholar 

  168. Janssen W, Faby S, Gheeraert E. Bottom-up fabrication of diamond nanowires arrays. Diam Relat Mater 2011; 20(5–6): 779–81.

    Article  Google Scholar 

  169. Smirnov W, Kriele A, Yang N, Nebel CE. Aligned diamond nanowires: Fabrication and characterization for advanced applications in bio-and electrochemistry. Diam Relat Mater 2010; 19(2–3): 186–9.

    Article  Google Scholar 

  170. Mehedi HA, Arnault JC, Eon D, Hébert C, Carole D, Omnes F et al. Etching mechanism of diamond by Ni nanoparticles for fabrication of nanopores. Carbon 2013: 59; 448–56.

    Google Scholar 

  171. Smirnov W, Hess JJ, Brink D, Sebert WM, Kriele A, and Williams OA et al. Anisotropic etching of diamond by molten ni particles. Appl Phys Lett, 2010.

    Google Scholar 

  172. Kato H, Hess J, Hoffmann R, Wolfer M, Yang N, Yamasaki S et al. Diamond foam electrodes for electrochemical applications. Electrochem Com 2013: 33; 88–91.

    Article  Google Scholar 

  173. Hébert C., Mazellier J-P., Scorsone E., Mermoux M., Bergonzo P. Bossting the electrochemical properties of diamond using a vertically aligned CNT scaffold, Carbon 2014, 71, 27–33.

    Article  Google Scholar 

  174. H. Zanin, PW May, DJ. Firmin, D. Plana, SM. Viera, WI Milne, EJ Corat, ACS Appl Mater Interfaces. 2014 22;6(2):990–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clément Hébert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hébert, C., Ruffinatto, S., Bergonzo, P. (2015). Diamond Biosensors. In: Demarchi, D., Tagliaferro, A. (eds) Carbon for Sensing Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-08648-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08648-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08647-7

  • Online ISBN: 978-3-319-08648-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics