Skip to main content

Silicon Carbide Materials for Biomedical Applications

  • Chapter
  • First Online:
Carbon for Sensing Devices

Abstract

There is a growing interest in using technology to provide diagnostics, therapeutics, and measured drug delivery to individuals suffering from a myriad of issues. Many of these biotechnological devices need to interact with the human body indefinitely, and it has therefore become a priority that these devices interact with the body with an increased level of biocompatibility. Biocompatibility is a complex concept which has been redefined many times due to our ever increasing knowledge of human physiology. In essence, it is defined as the ability of a device to function as it was designed while not interacting physiologically in a deleterious manner. Numerous materials have been used to fabricate biotechnological devices but, unfortunately, many have not shown the level of biocompatibility necessary to perform their intended function within an appropriate period of time. In this chapter, we detail two materials that are ideal for long-term biotechnological devices. Silicon carbide has shown superior biocompatibility through international standard based testing, both in vitro and in vivo. This material possesses excellent physical robustness, chemical resistivity, and multiple options for smart devices through its electrical, chemical and optical properties. It is also an ideal surface for which to develop graphene, another important material with superior physical, chemical and electrical properties. We briefly detail some of the biotechnology already developed and used successfully in clinical trials. At the end of the discussion, we report on research being performed on two types of implantable devices: one that will allow continuous monitoring of blood glucose levels for diabetics, and an implantable neural interface system for use in brain machine interfaces (BMI) and therapeutics for diseases like Parkinson’s and Alzheimer’s diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. E. Saddow and A. Agarwal, Advances in silicon carbide processing and applications. Boston: Artech House, 2004.

    Google Scholar 

  2. H. Guo, Y. Wang, S. Chen, G. Zhang, H. Zhang, and Z. Li, “PECVD SiC as a Chemical Resistant Material in MEMS,” Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 805–808, 18–21 January 2006.

    Google Scholar 

  3. I. Yonenaga, “Thermo-mechanical stability of wide-bandgap semiconductors: high temperature hardness of SiC, AIN, GaN, ZnO and ZnSe,” Physica B-Condensed Matter, vol. 308, pp. 1150–1152, Dec 2001.

    Google Scholar 

  4. S. E. Saddow, Ed., Silicon Carbide Biotechnology: A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications. Amsterdam: Elsevier, 2011.

    Google Scholar 

  5. M. P. Mills. (2008, May 8). The LED Illumination Revolution. Available: http://www.forbes.com/2008/02/27/incandescent-led-cfl-pf-guru_in_mm_0227energy_inl.html.

  6. Y. Karpova, A. V. Kulika, I. A. Zhmakina, Y. N. Makarovb, E. N. Mokhovc, M. G. Rammc, M. S. Ramm, A. D. Roenkovc, and Y. A. Vodakov, “Analysis of sublimation growth of bulk SiC crystals in tantalum container,” Journal of Crystal Growth, vol. 211, pp. 347–351, 2000.

    Google Scholar 

  7. S. F. Cogan, D. J. Edell, A. A. Guzelian, Y. Ping Liu, and R. Edell, “Plasma-enhanced chemical vapor deposited silicon carbide as an implantable dielectric coating,” Journal of Biomedical Materials Research Part A, vol. 67, pp. 856–67, Dec 1 2003.

    Google Scholar 

  8. A. Ellison, J. Zhang, J. Peterson, A. Henry, Q. Wahab, J. P. Bergman, Y. N. Makarov, A. Vorob’ev, A. Vehanen, and E. Janzen, “High temperature CVD growth of SiC,” Materials Science and Engineering B-Solid State Materials for Advanced Technology, vol. 61–2, pp. 113–120, Jul 30 1999.

    Google Scholar 

  9. S. A. Sakwe, M. Stockmeier, P. Hens, R. Mueller, D. Queren, U. Kunecke, K. Konias, R. Hock, A. Magerl, M. Pons, A. Winnacker, and P. Wellmann, “Bulk growth of SiC-review on advances of SiC vapor growth for improved doping and systematic study on dislocation evolution,” Physica Status Solidi B-Basic Solid State Physics, vol. 245, pp. 1239–1256, Jul 2008.

    Google Scholar 

  10. C. Hehrlein, “Stent Passivation with Silicon Carbide as a Possible Alternative to Drug-eluting Stents-A Comprehensive Review of Pre-clinical and Clinical Results,” Interventional Cardiology Review, vol. 4, pp. 60–63, 2009.

    Google Scholar 

  11. M. Syvajarvi, R. Yakimova, H. H. Radamson, N. T. Son, Q. Wahab, I. G. Ivanov, and E. Janzen, “Liquid phase epitaxial growth of SiC,” Journal of Crystal Growth, vol. 197, pp. 147–154, Feb 1999.

    Google Scholar 

  12. J. Chen, A. J. Steckl, and M. J. Loboda, “Molecular beam epitaxy growth of SiC on Si(111) from silacyclobutane,” Journal of Vacuum Science & Technology B, vol. 16, pp. 1305–1308, May-Jun 1998.

    Google Scholar 

  13. O. Kordina, C. Hallin, A. Henry, J. P. Bergman, I. Ivanov, A. Ellison, N. T. Son, and E. Janzen, “Growth of SiC by “hot-wall” CVD and HTCVD,” Physica Status Solidi B-Basic Research, vol. 202, pp. 321–334, Jul 1997.

    Google Scholar 

  14. C. L. Frewin, C. Coletti, C. Riedl, U. Starke, and S. E. Saddow, “A Comprehensive Study of Hydrogen Etching on the Major SiC Polytypes and Crystal Orientations,” Materials Science Forum, vol. 615–617, pp. 589–592, Mar., 2009 2009.

    Google Scholar 

  15. C. Coletti, C. L. Frewin, A. M. Hoff, and S. E. Saddow, “Electronic passivation of 3C-SiC(001) via hydrogen treatment,” Electrochemical and Solid State Letters, vol. 11, pp. H285–H287, 2008.

    Google Scholar 

  16. D. J. Larkin, P. G. Neudeck, J. A. Powell, and L. G. Matus, “Site-Competition Epitaxy for Superior Silicon-Carbide Electronics,” Applied Physics Letters, vol. 65, pp. 1659–1661, Sep 26 1994.

    Google Scholar 

  17. F. La Via, G. Izzo, M. Mauceri, G. Pistoneb, G. Condorelli, L. Perdicaro, G. Abbondanza, L. Calcagno, G. Foti, and D. Crippa, “4H-SiC epitaxial layer growth by trichlorosilane (TCS),” Journal of Crystal Growth, vol. 311, pp. 107–113, 2008.

    Google Scholar 

  18. S. Nishino, J. A. Powell, and H. A. Will, “Production of Large-Area Single-Crystal Wafers of Cubic Sic for Semiconductor-Devices,” Applied Physics Letters, vol. 42, pp. 460–462, 1983.

    Google Scholar 

  19. M. Reyes, Y. Shishkin, S. Harvey, and S. E. Saddow, “Development of a high-growth rate 3C-SiC on Si CVD process,” Mater. Res. Soc. Symp. Proc., vol. 911, pp. 79–84, 2006.

    Google Scholar 

  20. M. Reyes, Y. Shishkin, S. Harvey, and S. E. Saddow, “Increased Growth Rates of 3C-SiC on Si(100) Substrates via HCl Growth Additive,” Materials Science Forum, vol. 556–557, pp. 191–194, 2006.

    Google Scholar 

  21. C. L. Frewin, C. Locke, J. Wang, P. Spagnol, and S. E. Saddow, “Growth of cubic silicon carbide on oxide using polysilicon as a seed layer for micro-electro-mechanical machine applications,” Journal of Crystal Growth, vol. 311, pp. 4179–4182, Aug 15 2009.

    Google Scholar 

  22. C. Locke, C. Frewin, L. Abbati, and S. E. Saddow, “Demonstration of 3C-SiC MEMS Structures on Poly-Si-on-oxide Substrates,” Materials Research Society Proceedings, vol. 1246, pp. 1246-B08-05, 2010.

    Google Scholar 

  23. J. D. Reddy, A. A. Volinsky, C. L. Frewin, C. Locke, and S. E. Saddow, “Mechanical properties of single and polycrystalline SiC thin films,” Mater. Res. Soc. Symp. Proc., vol. 1049, p. AA03, 2008.

    Google Scholar 

  24. J. D. Reddy, A. A. Volinsky, C. L. Frewin, C. Locke, and S. E. Saddow, “Mechanical Properties of 3C-SiC Films for MEMS Applications,” Mat. Res. Soc. Symp. Proc., vol. 1049, pp. 1049-AA03-06, 2007.

    Google Scholar 

  25. C. Iliescu, B. T. Chen, J. S. Wei, and A. J. Pang, “Characterisation of silicon carbide films deposited by plasma-enhanced chemical vapour deposition,” Thin Solid Films, vol. 516, pp. 5189–5193, Jun 30 2008.

    Google Scholar 

  26. R. Yakimova, R. M. Petoral, G. R. Yazdi, C. Vahlberg, A. L. Spetz, and K. Uvdal, “Surface functionalization and biomedical applications based on SiC,” Journal of Physics D-Applied Physics, vol. 40, pp. 6435–6442, Oct 21 2007.

    Google Scholar 

  27. C. A. Zorman, “Silicon carbide as a material for biomedical microsystems,” Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, pp. 1–7, 2009.

    Google Scholar 

  28. A. Hess, R. Parro, J. Du, J. D. M. Scardelletti, and C. A. Zorman, “PECVD silicon carbide as a thin film packaging material for microfabricated neural electrodes,” Materials Research Society Proceedings, vol. 1009, pp. U04-03 2007.

    Google Scholar 

  29. A. Rzany and M. Schaldach, “Smart Material Silicon Carbide: Reduced Activation of Cells and Proteins on a SiC:H-coated Stainless Steel,” Prog Biomed Res, vol. 4, pp. 182–194, 2001.

    Google Scholar 

  30. U. Kalnins, A. Erglis, I. Dinne, I. Kumsars, and S. Jegere, “Clinical outcomes of silicon carbide coated stents in patients with coronary artery disease,” Med Sci Monit, vol. 8, pp. PI16–20, Feb 2002.

    Google Scholar 

  31. K. Hattori, T. Mori, H. Okamoto, and Y. Hamakawa, “Photothermal Modulation Spectroscopy of Multilayered Structures of Amorphous-Silicon and Amorphous-Silicon Carbide,” Physical Review Letters, vol. 60, pp. 825–827, Feb 29 1988.

    Google Scholar 

  32. M. Mehregany, C. A. Zorman, N. Rajan, and C. H. Wu, “Silicon carbide MEMS for harsh environments,” Proceedings of the Ieee, vol. 86, pp. 1594–1610, Aug 1998.

    Google Scholar 

  33. R. Anzalone, A. Severino, C. Locke, S. E. Saddow, F. La Via, and G. D’Arrigo, “3C-SiC hetero-epitaxial films for sensor fabrication,” Advances in Science and Technology, vol. 54, pp. 411–415, 2008.

    Google Scholar 

  34. R. Anzalone, M. Camarda, D. A. G., C. Locke, A. Canino, N. Piulso, A. Severino, A. La Magna, S. E. Saddow, and F. La Via, “Advanced stress analysis by micro-structures realization on high-quallity hetero-epitaxial 3C-SiC for MEMS application,” Materials Science Forum, vol. 679–680, pp. 133–136, 2011.

    Google Scholar 

  35. C. A. Zorman and R. J. Parro, “Micro- and nanomechanical structures for silicon carbide MEMS and NEMS,” phys. stat. sol. (b), vol. 245, pp. 1404–1424, 2008.

    Google Scholar 

  36. E. H. Awtry, C. J. Jeon, and M. Ware, Blueprints Cardiology. Baltimore, MD USA: Lippincott, Williams, and Wilkins, 2005.

    Google Scholar 

  37. D. F. Williams, “On the mechanisms of biocompatibility,” Biomaterials, vol. 29, pp. 2941–53, Jul 2008.

    Google Scholar 

  38. S. Santavirta, M. Takagi, L. Nordsletten, A. Anttila, R. Lappalainen, and Y. T. Konttinen, “Biocompatibility of silicon carbide in colony formation test in vitro. A promising new ceramic THR implant coating material,” Arch Orthop Trauma Surg, vol. 118, pp. 89–91, 1998.

    Google Scholar 

  39. K. Hashiguchi and K. Hashimoto, “Mechanical and histological investigations on pressureless sintered SiC dental implants,” Okajimas Folia Anatomica Japonica, vol. 75, pp. 281–296, 1999.

    Google Scholar 

  40. C. L. Frewin, C. Locke, L. Mariusso, E. J. Weeber, and S. E. Saddow, “Silicon Carbide Neural Implants: in vivo Neural Tissue Reaction,” presented at the Neural Engineering Conference, NER 2013, International Conference of the IEEE, San Diego, 2013.

    Google Scholar 

  41. C. L. Frewin, C. Locke, S. E. Saddow, and E. J. Weeber, “Single-Crystal Cubic Silicon Carbide: An in vivo biocompatible semiconductor for brain machine interface devices,” in Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE, Boston, MA, 2011, pp. 2957–2960.

    Google Scholar 

  42. C. L. Frewin, L. Abbati, E. J. Weeber, and S. E. Saddow, “SiC for Brain-Machine Interface (BMI),” in Silicon Carbide Biotechnology: A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications, S. E. Saddow, Ed., ed Amsterdam: Elsevier, 2011.

    Google Scholar 

  43. C. L. Frewin, A. Oliveros, C. Locke, I. Filonova, J. Rogers, E. Weeber, and S. E. Saddow, “The Development of Silicon Carbide Based Electrode Devices for Central Nervous System Biomedical Implants,” Mater. Res. Soc. Symp. Proc., vol. 1236E, pp. 1236-SS01-02, 2009.

    Google Scholar 

  44. C. L. Frewin, M. Jaroszeski, E. Weeber, K. E. Muffly, A. Kumar, M. Peters, A. Oliveros, and S. E. Saddow, “Atomic force microscopy analysis of central nervous system cell morphology on silicon carbide and diamond substrates,” J Mol Recognit, vol. 22, pp. 380–8, Sep-Oct 2009.

    Google Scholar 

  45. G. Carter, J. B. Casady, M. Okhuysen, J. D. Scofield, and S. E. Saddow, “Preliminary investigation of 3C-SiC on silicon for biomedical applications,” Materials Science Forum, vol. 338–342, pp. 1149–1152, 2000.

    Google Scholar 

  46. P. Godignon, “SiC materials and technologies for sensors development,” Silicon Carbide and Related Materials 2004, vol. 483, pp. 1009–1014, 2005.

    Google Scholar 

  47. E. W. Keefer, A. Gramowski, D. A. Stenger, J. J. Pancrazio, and G. W. Gross, “Characterization of acute neurotoxic effects of trimethylolpropane phosphate via neuronal network biosensors,” Biosens Bioelectron, vol. 16, pp. 513–25, Sep 2001.

    Google Scholar 

  48. C. Coletti, “Silicon carbide biocompatibility, surface control and electronic cellular interaction for biosensing applications,” Ph.D., Electrical Engineering, University of South Florida, Tampa, FL USA, 2007.

    Google Scholar 

  49. R. L. Myers, Y. Shishkin, O. Kordina, and S. E. Saddow, “High growth rates (> 30 mu m/h) of 4H-SiC epitaxial layers using a horizontal hot-wall CVD reactor,” Journal of Crystal Growth, vol. 285, pp. 486–490, Dec 15 2005.

    Google Scholar 

  50. C. Coletti, C. L. Frewin, S. E. Saddow, M. Hetzel, C. Virojanadara, and U. Starke, “Surface studies of H2-etched 3C-SiC(001) on Si(001),” Applied Physics Letters, vol. 91, p. 061914, 2007.

    Google Scholar 

  51. C. Coletti, M. J. Jaroszeski, A. M. Hoff, and S. E. Saddow, “SiC In Vitro Biocompatibility: Epidermal and Connective Tissue Cells,” in Silicon Carbide Biotechnology: A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications, S. E. Saddow, Ed., ed: Elsevier, 2011.

    Google Scholar 

  52. C. Coletti, M. Jaroszeski, A. M. Hoff, and S. E. Saddow, “Culture of mammalian cells on single crystal SiC substrates,” Mater. Res. Soc. Symp. Proc., vol. 950, 2006.

    Google Scholar 

  53. C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science, vol. 276, p. 1425, 1997.

    Google Scholar 

  54. V. S. Polikov, P. A. Tresco, and W. M. Reichert, “Response of brain tissue to chronically implanted neural electrodes,” Journal of Neuroscience Methods, vol. 148, p. 18, 2005/08/08 2005.

    Google Scholar 

  55. J. W. Fawcett and R. A. Asher, “The glial scar and central nervous system repair,” Brain Research Bulletin, vol. 49, p. 15, May 14, 1999 1999.

    Google Scholar 

  56. R. W. Griffith and D. R. Humphrey, “Long-term gliosis around chronically implanted platinum electrodes in the Rhesus macaque motor cortex,” Neurosci Lett, vol. 406, pp. 81–6, Oct 2 2006.

    Google Scholar 

  57. C. Coletti, M. J. Jaroszeski, A. Pallaoro, A. M. Hoff, S. Iannotta, and S. E. Saddow, “Biocompatibility and wettability of crystalline SiC and Si surfaces,” Conf Proc IEEE Eng Med Biol Soc, vol. 2007, pp. 5850–3, 2007.

    Google Scholar 

  58. T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” J Immunol Methods, vol. 65, pp. 55–63, Dec 16 1983.

    Google Scholar 

  59. E. Abemayor and N. Sidell, “Human Neuro-Blastoma Cell-Lines as Models for the Invitro Study of Neoplastic and Neuronal Cell-Differentiation,” Environmental Health Perspectives, vol. 80, pp. 3–15, Mar 1989.

    Google Scholar 

  60. Y. Wakamatsu, X. X. Zhao, C. Y. Jin, N. Day, M. Shibahara, N. Nomura, T. Nakahara, T. Murata, and K. K. Yokoyama, “Mannosylerythritol lipid induces characteristics of neuronal differentiation in PC12 cells through an ERK-related signal cascade,” European Journal of Biochemistry, vol. 268, pp. 374–383, Jan 2001.

    Google Scholar 

  61. C. Locke, R. Anzalone, A. Severino, C. Bongiorno, G. Litrico, F. La Via, and S. Saddow, “High Quality Single Crystal 3C-SiC(111) Films Grown on Si(111),” Materials Science Forum, vol. 615–617, pp. 145–148, 2009.

    Google Scholar 

  62. W. Kern and D. A. Puotinen, “Cleaning Solutions Based on Hydrogen Peroxide for Use in Silicon Semiconductor Technology,” Rca Review, vol. 31, pp. 187–&, 1970.

    Google Scholar 

  63. NIST/SEMATECH. (2010, May 1). e-Handbook of Statistical Methods. Available: http://www.itl.nist.gov/div898/handbook/prc/section4/prc471.htm.

  64. C. S. Goodman, “Mechanisms and molecules that control growth cone guidance,” Annu Rev Neurosci, vol. 19, pp. 341–77, 1996.

    Google Scholar 

  65. T. V. Kumari, U. Vasudev, A. Kumar, and B. Menon, “Cell surface interactions in the study of biocompatibility,” Trend Biomater. Artif. Organs, vol. 15, pp. 37–41, 2002.

    Google Scholar 

  66. A. M. Rouhi, “Contemporary biomaterials,” Chemical & Engineering News, vol. 77, pp. 51- + , Jan 18 1999.

    Google Scholar 

  67. K. H. Kim, J. S. Cho, D. J. Choi, and S. K. Koh, “Hydrophilic group formation and cell culturing on polystyrene Petri-dish modified by ion-assisted reaction,” Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, vol. 175, pp. 542–547, Apr 2001.

    Google Scholar 

  68. M. Bergkvist, J. Carlsson, and S. Oscarsson, “Surface-dependent conformations of human plasma fibronectin adsorbed to silica, mica, and hydrophobic surfaces, studied with use of Atomic Force Microscopy,” Journal of Biomedical Materials Research Part A, vol. 64A, pp. 349–356, Feb 1 2003.

    Google Scholar 

  69. P. Clark, S. Britland, and P. Connolly, “Growth Cone Guidance and Neuron Morphology on Micropatterned Laminin Surfaces,” Journal of Cell Science, vol. 105, pp. 203–212, May 1993.

    Google Scholar 

  70. E. G. Fine, R. F. Valentini, R. Bellamkonda, and P. Aebischer, “Improved Nerve Regeneration through Piezoelectric Vinylidenefluoride-Trifluoroethylene Copolymer Guidance Channels,” Biomaterials, vol. 12, pp. 775–780, Oct 1991.

    Google Scholar 

  71. S. A. Makohliso, R. F. Valentini, and P. Aebischer, “Magnitude and Polarity of a Fluoroethylene Propylene Electret Substrate Charge Influences Neurite Outgrowth in-Vitro,” Journal of Biomedical Materials Research, vol. 27, pp. 1075–1085, Aug 1993.

    Google Scholar 

  72. C. E. Schmidt, V. R. Shastri, J. P. Vacanti, and R. Langer, “Stimulation of neurite outgrowth using an electrically conducting polymer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, pp. 8948–8953, Aug 19 1997.

    Google Scholar 

  73. T. H. Young and C. H. Hung, “Change in electrophoretic mobility of PC12 cells after culturing on PVA membranes modified with different diamines,” Journal of Biomedical Materials Research Part A, vol. 67A, pp. 1238–1244, Dec 15 2003.

    Google Scholar 

  74. E. M. Carlisle, “Silicon as an Essential Trace-Element in Animal Nutrition,” Ciba Foundation Symposia, vol. 121, pp. 123–139, 1986.

    Google Scholar 

  75. J. D. Birchall and J. S. Chappell, “The Chemistry of Aluminum and Silicon in Relation to Alzheimers-Disease,” Clinical Chemistry, vol. 34, pp. 265–267, Feb 1988.

    Google Scholar 

  76. C. O’Neil, P. Jordan, T. Bhatt, and R. Newman, “Silica and oesophageal cancer,” in Ciba Foundation Symposium-Silicon Biochemistry. vol. 121, D. Evered and M. O’Connor, Eds., ed Chichester, UK: John Wiley & Sons, 1986, pp. 214–230.

    Google Scholar 

  77. L. L. Hench and J. Wilson, “Biocompatibility of silicates for medical use,” in Ciba Foundation Symposium-Silicon Biochemistry. vol. 121, D. Evered and M. O’Connor, Eds., ed Chichester, UK: John Wiley & Sons, 1986, pp. 231–253.

    Google Scholar 

  78. G. W. Trucks, K. Raghavachari, G. S. Higashi, and Y. J. Chabal, “Mechanism of Hf Etching of Silicon Surfaces-a Theoretical Understanding of Hydrogen Passivation,” Physical Review Letters, vol. 65, pp. 504–507, Jul 23 1990.

    Google Scholar 

  79. O. Kordina and S. E. Saddow, “Silicon carbide overview,” in Advances in Silicon Carbide Processing and Applications, S. E. Saddow and A. Agarwal, Eds., 1 ed Boston, MA, U.S.A.: Artech House, Inc., 2004, pp. 2–3, 7–8, 18.

    Google Scholar 

  80. F. Beaudoin, M. Simard-Normandin, and M. Meunier, “Metallic contamination from wafer handling,” in Silicon Recombination Lifetime Characterization Methods, D. C. Gupta, F. Bacher, and W. H. Hugh, Eds., ed West Conshohocken, PA, USA: American Society for Testing Materials, 1988, pp. 219–225.

    Google Scholar 

  81. M. Kuhn and Silversm.Dj, “Ionic Contamination and Transport of Mobile Ions in Mos Structures,” Journal of the Electrochemical Society, vol. 118, pp. 966- &, 1971.

    Google Scholar 

  82. C. M. Osburn and S. I. Raider, “Effect of Mobile Sodium Ions on Field Enhancement Dielectric Breakdown in Sio2 Films on Silicon,” Journal of the Electrochemical Society, vol. 120, pp. 1369–1376, 1973.

    Google Scholar 

  83. S. I. Raider, L. V. Gregor, and R. Flitsch, “Transfer of Mobile Ions from Aqueous-Solutions to Silicon Dioxide Surface,” Journal of the Electrochemical Society, vol. 120, pp. 425–431, 1973.

    Google Scholar 

  84. E. H. Snow, A. S. Grove, B. E. Deal, and C. T. Sah, “Ion Transport Phenomena in Insulating Films,” Journal of Applied Physics, vol. 36, pp. 1664- &, 1965.

    Google Scholar 

  85. B. G. Streetman, Solid state electronic devices. Englewood Cliffs, N.J.,: Prentice-Hall, 1972.

    Google Scholar 

  86. E. M. Carlisle, “Silicon as an essential trace element in animal nutrition,” Ciba Found Symp, vol. 121, pp. 123–39, 1986.

    Google Scholar 

  87. J. D. Birshall and A. W. Espie, “Biological Implications of the Interaction (Via Silanol Groups) of Silicon with Metal-Ions,” in Silicon Biochemistry. vol. 121, D. Evered and M. O’Connor, Eds., ed Chichester, UK: John Wiley & Sons, 1986, pp. 140–159.

    Google Scholar 

  88. S. E. Saddow, “SiC biotechnology for advanced biomedical applications,” in Second Workshop on Advanced Cybernetics, ed. University of Sao Paulo, Sao Carlos, Brasil, 2013.

    Google Scholar 

  89. 2009, ISO-10993-5 Biological evaluation of medical devices Part 5 Tests for in vitro cytotoxicity

    Google Scholar 

  90. M. Hudis, “Plasma Treatment of Solid Materials,” in Techniques and Applications of Plasma Chemistry, J. R. Hollahan and A. T. Bell, Eds., ed New York, NY USA: John Wiley and Sons, 1974, pp. 113–147.

    Google Scholar 

  91. P. W. Rose and E. M. Liston, “Treating Plastic Surfaces with Cold Gas Plasmas,” Plastics Engineering, pp. 41–45, 1985.

    Google Scholar 

  92. 2009, ISO-10993-12 Biological evaluation of medical devices Part 12 Sample preparation and reference materials

    Google Scholar 

  93. R. E. Peierls, “Quelques proprietes typiques des corpses solides,” Ann. I. H. Poincare, vol. 5, pp. 177–222, 1935.

    MathSciNet  MATH  Google Scholar 

  94. L. D. Landau, “Zur Theorie der Phasenumwandlungen II,” Phys. Z. Sowjetunion, vol. 11, pp. 26–35, 1937.

    Google Scholar 

  95. P. R. Wallace, “The Band Theory of Graphite,” Physical Review, vol. 71, pp. 622–634, 1947.

    MATH  Google Scholar 

  96. J. W. Mcclure, “Diamagnetism of Graphite,” Physical Review, vol. 104, pp. 666–671, 1956.

    Google Scholar 

  97. E. Fradkin, “Critical-Behavior of Disordered Degenerate Semiconductors.2. Spectrum and Transport-Properties in Mean-Field Theory,” Physical Review B, vol. 33, pp. 3263–3268, Mar 1 1986.

    Google Scholar 

  98. M. S. Dresselhaus and G. Dresselhaus, “Intercalation compounds of graphite,” Advances in Physics, vol. 51, pp. 1–186, Jan 2002.

    Google Scholar 

  99. H. Shioyama, “Cleavage of graphite to graphene,” Journal of Materials Science Letters, vol. 20, pp. 499–500, Mar 2001.

    Google Scholar 

  100. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, pp. 666–669, Oct 22 2004.

    Google Scholar 

  101. C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, vol. 321, pp. 385–388, Jul 18 2008.

    Google Scholar 

  102. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science, vol. 320, pp. 1308–1308, Jun 6 2008.

    Google Scholar 

  103. A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Letters, vol. 8, pp. 902–907, Mar 2008.

    Google Scholar 

  104. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nature Materials, vol. 6, pp. 652–655, Sep 2007.

    Google Scholar 

  105. M. Qazi, T. Vogt, and G. Koley, “Trace gas detection using nanostructured graphite layers,” Applied Physics Letters, vol. 91, Dec 3 2007.

    Google Scholar 

  106. Y. P. Dan, Y. Lu, N. J. Kybert, Z. T. Luo, and A. T. C. Johnson, “Intrinsic Response of Graphene Vapor Sensors,” Nano Letters, vol. 9, pp. 1472–1475, Apr 2009.

    Google Scholar 

  107. G. F. Schneider, S. W. Kowalczyk, V. E. Calado, G. Pandraud, H. W. Zandbergen, L. M. K. Vandersypen, and C. Dekker, “DNA Translocation through Graphene Nanopores,” Nano Letters, vol. 10, pp. 3163–3167, Aug 2010.

    Google Scholar 

  108. N. Mohanty and V. Berry, “Graphene-Based Single-Bacterium Resolution Biodevice and DNA Transistor: Interfacing Graphene Derivatives with Nanoscale and Microscale Biocomponents,” Nano Letters, vol. 8, pp. 4469–4476, Dec 2008.

    Google Scholar 

  109. C. S. Shan, H. F. Yang, D. X. Han, Q. X. Zhang, A. Ivaska, and L. Niu, “Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing,” Biosens Bioelectron, vol. 25, pp. 1070–1074, Jan 15 2010.

    Google Scholar 

  110. Y. X. Huang, X. C. Dong, Y. M. Shi, C. M. Li, L. J. Li, and P. Chen, “Nanoelectronic biosensors based on CVD grown graphene,” Nanoscale, vol. 2, pp. 1485–1488, 2010.

    Google Scholar 

  111. H. Chen, M. B. Muller, K. J. Gilmore, G. G. Wallace, and D. Li, “Mechanically strong, electrically conductive, and biocompatible graphene paper,” Advanced Materials, vol. 20, pp. 3557- + , Sep 17 2008.

    Google Scholar 

  112. K. Wang, J. Ruan, H. Song, J. Zhang, Y. Wo, S. Guo, and D. Cui, “Biocompatibility of Graphene Oxide,” Nanoscale Research Letters, vol. 6, pp. 1–8, 2010.

    Google Scholar 

  113. X. Y. Zhang, J. L. Yin, C. Peng, W. Q. Hu, Z. Y. Zhu, W. X. Li, C. H. Fan, and Q. Huang, “Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration,” Carbon, vol. 49, pp. 986–995, Mar 2011.

    Google Scholar 

  114. Y. K. Kim, M. H. Kim, and D. H. Min, “Biocompatible reduced graphene oxide prepared by using dextran as a multifunctional reducing agent,” Chemical Communications, vol. 47, pp. 3195–3197, 2011.

    Google Scholar 

  115. S. R. Ryoo, Y. K. Kim, M. H. Kim, and D. H. Min, “Behaviors of NIH-3T3 Fibroblasts on Graphene/Carbon Nanotubes: Proliferation, Focal Adhesion, and Gene Transfection Studies,” Acs Nano, vol. 4, pp. 6587–6598, Nov 2010.

    Google Scholar 

  116. S. Agarwal, X. Z. Zhou, F. Ye, Q. Y. He, G. C. K. Chen, J. Soo, F. Boey, H. Zhang, and P. Chen, “Interfacing Live Cells with Nanocarbon Substrates,” Langmuir, vol. 26, pp. 2244–2247, Feb 16 2010.

    Google Scholar 

  117. M. Kalbacova, A. Broz, J. Kong, and M. Kalbac, “Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells,” Carbon, vol. 48, pp. 4323–4329, Dec 2010.

    Google Scholar 

  118. A. Bendali, L. H. Hess, M. Seifert, V. Forster, A. F. Stephan, J. A. Garrido, and S. Picaud, “Purified Neurons can Survive on Peptide-Free Graphene Layers,” Advanced Healthcare Materials, vol. 2, pp. 929–933, Jul 2013.

    Google Scholar 

  119. A. J. Vanbommel, J. E. Crombeen, and A. Vantooren, “Leed and Auger-Electron Observations of Sic (0001) Surface,” Surface Science, vol. 48, pp. 463–472, 1975.

    Google Scholar 

  120. A. Oliveros, C. Coletti, C. L. Frewin, C. Locke, U. Starke, and S. E. Saddow, “Cellular Interactions on Epitaxial Graphene on SiC (0001) Substrates,” Material Science Forum, vol. 679–680, pp. 831–834, 2011.

    Google Scholar 

  121. S. Goler, C. Coletti, V. Tozzini, V. Piazza, T. Mashoff, F. Beltram, V. Pellegrini, and S. Heun, “Influence of Graphene Curvature on Hydrogen Adsorption: Toward Hydrogen Storage Devices,” Journal of Physical Chemistry C, vol. 117, pp. 11506–11513, Jun 6 2013.

    Google Scholar 

  122. U. Starke, S. Forti, K. V. Emtsev, and C. Coletti, “Engineering the electronic structure of epitaxial graphene by transfer doping and atomic intercalation,” Mrs Bulletin, vol. 37, pp. 1177–1186, Dec 2012.

    Google Scholar 

  123. C. Coletti, M. J. Jaroszeski, A. Pallaoro, A. M. Hoff, S. Iannotta, and S. E. Saddow, “Biocompatibility and wettability of crystalline SiC and Si surfaces,” in IEEE Engineering in Medicine and Biology Society, Lyon, FR, 2007, pp. 5849–5852.

    Google Scholar 

  124. T. Akasaka, A. Yokoyama, M. Matsuoka, T. Hashimoto, and F. Watari, “Thin films of single-walled carbon nanotubes promote human osteoblastic cells (Saos-2) proliferation in low serum concentrations,” Materials Science and Engineering: C, vol. 30, pp. 391–399, 2010.

    Google Scholar 

  125. C. Coletti, K. V. Emtsev, A. A. Zakharov, T. Ouisse, D. Chaussende, and U. Starke, “Large area quasi-free standing monolayer graphene on 3C-SiC(111),” Applied Physics Letters, vol. 99, Aug 22 2011.

    Google Scholar 

  126. R. D. Beach, R. W. Conlan, M. C. Godwin, and F. Moussy, “Towards a miniature implantable in vivo telemetry monitoring system dynamically configurable as a potentiostat or galvanostat for two- and three-electrode biosensors,” Ieee Transactions on Instrumentation and Measurement, vol. 54, pp. 61–72, Feb 2005.

    Google Scholar 

  127. S. Afroz, “A Biocompatible SiC RF Antenna for In-vivo Sensing Applications,” Ph.D., Electrical Engineering, University of South Florida, 2013.

    Google Scholar 

  128. S. Afroz, S. W. Thomas, G. Mumcu, and S. E. Saddow, “Implantable SiC based RF antenna biosensor for continuous glucose monitoring,” in IEEE Sensors, Baltamore, Maryland USA, 2013.

    Google Scholar 

  129. S. S. Stensaas and L. J. Stensaas, “Reaction of Cerebral-Cortex to Chronically Implanted Plastic Needles,” Acta Neuropathologica, vol. 35, pp. 187–203, 1976.

    Google Scholar 

  130. D. J. Edell, V. V. Toi, V. M. McNeil, and L. D. Clark, “Factors influencing the biocompatibility of insertable silicon microshafts in cerebral cortex,” IEEE Trans Biomed Eng, vol. 39, pp. 635–43, Jun 1992.

    Google Scholar 

  131. T. G. H. Yuen and W. F. Agnew, “Histological-Evaluation of Polyesterimide-Insulated Gold Wires in Brain,” Biomaterials, vol. 16, pp. 951–956, Aug 1995.

    Google Scholar 

  132. P. J. Rousche and R. A. Normann, “Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex,” Journal of Neuroscience Methods, vol. 82, pp. 1–15, Jul 1 1998.

    Google Scholar 

  133. J. N. Turner, W. Shain, D. H. Szarowski, M. Andersen, S. Martins, M. Isaacson, and H. Craighead, “Cerebral astrocyte response to micromachined silicon implants,” Exp Neurol, vol. 156, pp. 33–49, Mar 1999.

    Google Scholar 

  134. M. HajjHassan, V. Chodavarapu, and S. Musallam, “NeuroMEMS: Neural Probe Microtechnologies,” Sensors, vol. 8, pp. 6704–6726, Oct 2008.

    Google Scholar 

  135. K. D. Wise, A. M. Sodagar, Y. Yao, M. N. Gulari, G. E. Perlin, and K. Najafi, “Microelectrodes, microelectronics, and implantable neural microsystems,” Proceedings of the Ieee, vol. 96, pp. 1184–1202, Jul 2008.

    Google Scholar 

  136. B. D. Winslow, M. B. Christensen, W. K. Yang, F. Solzbacher, and P. A. Tresco, “A comparison of the tissue response to chronically implanted Parylene-C-coated and uncoated planar silicon microelectrode arrays in rat cortex,” Biomaterials, Jun 17 2010.

    Google Scholar 

  137. S. M. Lawrence, J. O. Larsen, K. W. Horch, R. Riso, and T. Sinkjaer, “Long-term biocompatibility of implanted polymer-based intrafascicular electrodes,” J Biomed Mater Res, vol. 63, pp. 501–6, 2002.

    Google Scholar 

  138. D. H. Szarowski, M. D. Andersen, S. Retterer, A. J. Spence, M. Isaacson, H. G. Craighead, J. N. Turner, and W. Shain, “Brain responses to micro-machined silicon devices,” Brain Research, vol. 983, pp. 23–35, Sep 5 2003.

    Google Scholar 

  139. R. Biran, D. C. Martin, and P. A. Tresco, “Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays,” Experimental Neurology, vol. 195, pp. 115–126, Sep 2005.

    Google Scholar 

  140. V. S. Polikov, M. L. Block, J. M. Fellous, J. S. Hong, and W. M. Reichert, “In vitro model of glial scarring around neuroelectrodes chronically implanted in the CNS,” Biomaterials, vol. 27, pp. 5368–76, Nov 2006.

    Google Scholar 

  141. V. S. Polikov, E. C. Su, M. A. Ball, J. S. Hong, and W. M. Reichert, “Control protocol for robust in vitro glial scar formation around microwires: essential roles of bFGF and serum in gliosis,” J Neurosci Methods, vol. 181, pp. 170–7, Jul 30 2009.

    Google Scholar 

  142. V. S. Polikov, J. S. Hong, and W. M. Reichert, “Soluble factor effects on glial cell reactivity at the surface of gel-coated microwires,” J Neurosci Methods, vol. 190, pp. 180–7, Jul 15 2010.

    Google Scholar 

  143. J. J. Vidal, “Toward direct brain-computer communication,” in Annu Rev Biophys Bioeng. vol. 2, L. J. Mullins, Ed., ed Palo Alto, CA: Annual Reviews, Inc., 1973, pp. 157–80.

    Google Scholar 

  144. M. A. Lebedev and M. A. L. Nicolelis, “Brain-machine interfaces: past, present and future,” Trends in Neurosciences, vol. 29, pp. 536–546, Sep 2006.

    Google Scholar 

  145. C. Richards-Grayson, R. S. Shawgo, and A. M. Johnson, “A bioMEMS review: MEMS technology for physiologically integrated devices,” Proceedings of the Ieee, vol. 92, pp. 6–21, 2004.

    Google Scholar 

  146. T. James, M. S. Mannoor, and D. V. Ivanov, “BioMEMS-Advancing the frontiers of medicine,” Sensors, vol. 8, pp. 6077–6107, Sep 2008.

    Google Scholar 

  147. K. D. Wise, J. B. Angell, and A. Starr, “An integrated-circuit approach to extracellular microelectrodes,” IEEE Trans Biomed Eng, vol. 17, pp. 238–47, Jul 1970.

    Google Scholar 

  148. S. F. Cogan, “Neural stimulation and recording electrodes,” Annual Review of Biomedical Engineering, vol. 10, pp. 275–309, 2008.

    Google Scholar 

  149. T. L. Rose and L. S. Robblee, “Electrical stimulation with Pt electrodes. VIII. Electrochemically safe charge injection limits with 0.2 ms pulses,” IEEE Trans Biomed Eng, vol. 37, pp. 1118–20, Nov 1990.

    Google Scholar 

  150. L. S. Robblee, J. McHardy, W. F. Agnew, and L. A. Bullara, “Electrical stimulation with Pt electrodes. VII. Dissolution of Pt electrodes during electrical stimulation of the cat cerebral cortex,” J Neurosci Methods, vol. 9, pp. 301–8, Dec 1983.

    Google Scholar 

  151. A. W. Bott, “Electrochemistry of Semiconductors,” Current Separations, vol. 17, 1998.

    Google Scholar 

  152. N. Yang, H. Zhuang, R. Hoffmann, W. Smirnov, J. Hees, X. Jiang, and C. E. Nebel, “Electrochemistry of nanocrystalline 3C silicon carbide films,” Chemistry, vol. 18, pp. 6514–9, May 21 2012.

    Google Scholar 

  153. L. Abbati, C. L. Frewin, P. Placidi, S. E. Saddow, and A. Scorzoni, “Design and simulation of a 64 channel, high voltage analog interface for stimulation and acquisition of neural signals,” Advances in Sensors and Interfaces (IWASI), 2011 4th IEEE International Workshop on, pp. 45–50, 2011.

    Google Scholar 

  154. L. Abbati, “Development of a Bi-Directional Electronics Platform for Advanced Neural Applications,” Ph.D., Electrical Engineering, University of South Florida, Tampa, FL USA, 2012.

    Google Scholar 

  155. C. L. Frewin, C. Locke, L. Mariusso, E. J. Weeber, and S. E. Saddow, “Silicon Carbide Neural Implants: in vivo Neural Tissue Reaction,” Neural Engineering (NER), 6th International IEEE/EMBS Conference on, pp. 661–664, 2013.

    Google Scholar 

  156. R. L. Sidman, B. Kosaras, B. Misra, and S. Senft. (2011, May 28). High Resolution Mouse Brain Atlas. Available: http://www.hms.harvard.edu/research/brain/index.html.

  157. C. Locke, G. Kravchenko, P. Waters, J. D. Reddy, K. Du, A. A. Volinsky, C. L. Frewin, and S. E. Saddow, “3C-SiC Films on Si for MEMS Applications: Mechanical Properties,” Material Science Forum, vol. 615–617, pp. 633–636, 2009.

    Google Scholar 

  158. F. Laermer and A. Schilp, “Method of anisotropic etching of silicon,” United States of America Patent, 1999.

    Google Scholar 

  159. K. Lee, A. Singh, J. P. He, S. Massia, B. Kim, and G. Raupp, “Polyimide based neural implants with stiffness improvement,” Sensors and Actuators B-Chemical, vol. 102, pp. 67–72, Sep 1 2004.

    Google Scholar 

  160. K. K. Lee, J. P. He, A. Singh, S. Massia, G. Ehteshami, B. Kim, and G. Raupp, “Polyimide-based intracortical neural implant with improved structural stiffness,” Journal of Micromechanics and Microengineering, vol. 14, pp. 32–37, Jan 2004.

    Google Scholar 

  161. R. M. Gustin, T. J. Bichell, M. Bubser, J. Daily, I. Filonova, D. Mrelashvili, A. Y. Deutch, R. J. Colbran, E. J. Weeber, and K. F. Haas, “Tissue-specific variation of Ube3a protein expression in rodents and in a mouse model of Angelman syndrome,” Neurobiology of Disease, vol. 39, pp. 283–291, Sep 2010.

    Google Scholar 

  162. M. A. Cosenza-Nashat, M. O. Kim, M. L. Zhao, H. S. Suh, and S. C. Lee, “CD45 isoform expression in microglia and inflammatory cells in HIV-1 encephalitis,” Brain Pathol, vol. 16, pp. 256–65, Oct 2006.

    Google Scholar 

  163. H. Kettenmann, U. K. Hanisch, M. Noda, and A. Verkhratsky, “Physiology of microglia,” Physiological Reviews, vol. 91, pp. 461–553, Apr 2011.

    Google Scholar 

  164. U. K. Hanisch and H. Kettenmann, “Microglia: active sensor and versatile effector cells in the normal and pathologic brain,” Nature Neuroscience, vol. 10, pp. 1387–94, Nov 2007.

    Google Scholar 

  165. J. Botsoa, V. Lysenko, A. Geloen, O. Marty, J. M. Bluet, and G. Guillot, “Application of 3C-SiC quantum dots for living cell imaging,” Applied Physics Letters, vol. 92, Apr 28 2008.

    Google Scholar 

  166. A. Severino, C. Frewin, C. Bongiorno, R. Anzalone, S. E. Saddow, and F. La Via, “Structural defects in (100) 3C-SiC heteroepitaxy: Influence of the buffer layer morphology on generation and propagation of stacking faults and microtwins,” Diamond and Related Materials, vol. 18, pp. 1440–1449, Dec 2009.

    Google Scholar 

  167. R. J. S. Briggs, H. C. Eder, P. M. Seligman, R. S. C. Cowan, K. L. Plant, J. Dalton, D. K. Money, and J. F. Patrick, “Initial clinical experience with a totally implantable cochlear implant research device,” Otology & Neurotology, vol. 29, pp. 114–119, Feb 2008.

    Google Scholar 

  168. K. D. Wise, P. T. Bhatti, J. Wang, and C. R. Friedrich, “High-density cochlear implants with position sensing and control,” Hear Res, vol. 242, pp. 22–30, Aug 2008.

    Google Scholar 

  169. J. D. Weiland and M. S. Humayun, “Intraocular retinal prosthesis-Big steps to sight restoration,” Ieee Engineering in Medicine and Biology Magazine, vol. 25, pp. 60–66, Sep–Oct 2006.

    Google Scholar 

  170. J. Wessberg, C. R. Stambaugh, J. D. Kralik, P. D. Beck, M. Laubach, J. K. Chapin, J. Kim, S. J. Biggs, M. A. Srinivasan, and M. A. Nicolelis, “Real-time prediction of hand trajectory by ensembles of cortical neurons in primates,” Nature, vol. 408, pp. 361–5, Nov 16 2000.

    Google Scholar 

  171. M. Velliste, S. Perel, M. C. Spalding, A. S. Whitford, and A. B. Schwartz, “Cortical control of a prosthetic arm for self-feeding,” Nature, vol. 453, pp. 1098–1101, Jun 19 2008.

    Google Scholar 

  172. M. Shiraishi and H. Sumiya, “Manipulator operation by using brain-wave signals,” in IEEE/ RSJ International Conference on Intelligent Robots and Systems, Edmonton, Alberta, Canada, 2005, pp. 3105–3110.

    Google Scholar 

  173. P. Rousche, R. Clement, C. Visser, J. Cruz, and J. Si, “Neurabotics: an integration of neurons, rats, and robots for advanced studies of brain-computer interface systems,” in 1st International IEEE EMBS Conference on Neural Engineering, Capri Island, Italy, 2003, pp. 462–465.

    Google Scholar 

  174. J. P. Donoghue, “Bridging the brain to the world: a perspective on neural interface systems,” Neuron, vol. 60, pp. 511–21, Nov 6 2008.

    Google Scholar 

  175. J. M. Carmena, M. A. Lebedev, R. E. Crist, J. E. O’Doherty, D. M. Santucci, D. F. Dimitrov, P. G. Patil, C. S. Henriquez, and M. A. Nicolelis, “Learning to control a brain-machine interface for reaching and grasping by primates,” PLoS Biol, vol. 1, p. E42, Nov 2003.

    Google Scholar 

  176. I. Medtronic MiniMed. (2013, January 27). Guardian REAL-Time CGM System. Available: http://www.medtronicdiabetes.com/treatment-and-products/guardian-real-time-cgm-system.

  177. F. M. Weaver, K. Follett, M. Stern, K. Hur, C. Harris, W. J. Marks, Jr., J. Rothlind, O. Sagher, D. Reda, C. S. Moy, R. Pahwa, K. Burchiel, P. Hogarth, E. C. Lai, J. E. Duda, K. Holloway, A. Samii, S. Horn, J. Bronstein, G. Stoner, J. Heemskerk, and G. D. Huang, “Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial,” JAMA, vol. 301, pp. 63–73, Jan 7 2009.

    Google Scholar 

  178. W. Thevathasan and R. Gregory, “Deep brain stimulation for movement disorders,” Pract Neurol, vol. 10, pp. 16–26, Feb 2010.

    Google Scholar 

  179. R. Biran, D. C. Martin, and P. A. Tresco, “The brain tissue response to implanted silicon microelectrode arrays is increased when the device is tethered to the skull,” Journal of Biomedical Materials Research Part A, vol. 82A, pp. 169–178, Jul 2007.

    Google Scholar 

  180. G. Deuschl, J. Herzog, G. Kleiner-Fisman, C. Kubu, A. M. Lozano, K. E. Lyons, M. C. Rodriguez-Oroz, F. Tamma, A. I. Troster, J. L. Vitek, J. Volkmann, and V. Voon, “Deep brain stimulation: postoperative issues,” Mov Disord, vol. 21 Suppl 14, pp. S219–37, Jun 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Saddow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Frewin, C., Coletti, C., Register, J., Nezafati, M., Thomas, S., Saddow, S. (2015). Silicon Carbide Materials for Biomedical Applications. In: Demarchi, D., Tagliaferro, A. (eds) Carbon for Sensing Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-08648-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08648-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08647-7

  • Online ISBN: 978-3-319-08648-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics