Skip to main content

Carbon Nanomaterials for Electrochemical and Electrochemiluminescent Medical Sensors

  • Chapter
  • First Online:
Carbon for Sensing Devices

Abstract

Electrochemical detection is one of the most powerful techniques in sensing applications, in particular for biomedical sensors. Its combination with carbon-based materials gives several advantages in terms of sensitivity, increase of electrode area and biocompatibility. In this chapter a first part will be focused on the electrochemical properties of carbon, then several electrode nanostructuration approaches will be presented. The last part will describe the use of these techniques for the detection of metabolites, and an application based on the use of Carbon NanoTubes in ElectroChemiLuminescence detection will conclude the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tang, L., et al., Preparation, structure, and electrochemical properties of reduced graphene sheet films. Advanced Functional Materials, 2009. 19(17): p. 2782–2789.

    Google Scholar 

  2. Nugent, J., et al., Fast electron transfer kinetics on multiwalled carbon nanotube microbundle electrodes. Nano letters, 2001. 1(2): p. 87–91.

    Google Scholar 

  3. Banks, C.E. and R.G. Compton, New electrodes for old: from carbon nanotubes to edge plane pyrolytic graphite. Analyst, 2006. 131(1): p. 15–21.

    Google Scholar 

  4. Diao, P. and Z. Liu, Vertically Aligned Single-Walled Carbon Nanotubes by Chemical Assembly–Methodology, Properties, and Applications. Advanced Materials, 2010. 22(13): p. 1430–1449.

    Google Scholar 

  5. Taurino, I., et al., Carbon nanotubes with different orientations for electrochemical biodevices. IEEE Sensors, 2012. 12(12): p. 3356–3362.

    Google Scholar 

  6. Liu, J., et al., Achieving direct electrical connection to glucose oxidase using aligned single walled carbon nanotube arrays. Electroanalysis, 2005. 17(1): p. 38–46.

    Google Scholar 

  7. Sanginario, A., et al., Improving the signal-to-noise ratio of an ECL-based sensor using ad hoc carbon nanotube electrodes. Journal of Micromechanics and Microengineering, 2012. 22(7): p. 074010.

    Google Scholar 

  8. Gooding, J.J., et al., The effects of the lengths and orientations of single-walled carbon nanotubes on the electrochemistry of nanotube-modified electrodes. Electrochemistry communications, 2007. 9(7): p. 1677–1683.

    Google Scholar 

  9. Lawrence, N.S., R.P. Deo, and J. Wang, Comparison of the electrochemical reactivity of electrodes modified with carbon nanotubes from different sources. Electroanalysis, 2005. 17(1): p. 65–72.

    Google Scholar 

  10. Lim, C.X., et al., Direct Voltammetric Detection of DNA and pH Sensing on Epitaxial Graphene: An Insight into the Role of Oxygenated Defects. Analytical Chemistry, 2010. 82(17): p. 7387–7393.

    Google Scholar 

  11. Wang, Z., et al., Comparative studies on single-layer reduced graphene oxide films obtained by electrochemical reduction and hydrazine vapor reduction. Nanoscale Research Letters, 2012. 7(1): p. 1–7.

    Google Scholar 

  12. Gong, K., S. Chakrabarti, and L. Dai, Electrochemistry at carbon nanotube electrodes: Is the nanotube tip more active than the sidewall? Angewandte Chemie International Edition, 2008. 47(29): p. 5446–5450.

    Google Scholar 

  13. Banks, C.E., et al., Carbon Nanotubes Contain Metal Impurities Which Are Responsible for the “Electrocatalysis” Seen at Some Nanotube-Modified Electrodes. Angewandte Chemie International Edition, 2006. 45(16): p. 2533–2537.

    Google Scholar 

  14. Šljukić, B., C.E. Banks, and R.G. Compton, Iron Oxide Particles Are the Active Sites for Hydrogen Peroxide Sensing at Multiwalled Carbon Nanotube Modified Electrodes. Nano Letters, 2006. 6(7): p. 1556–1558.

    Google Scholar 

  15. Ambrosi, A. and M. Pumera, Nanographite Impurities Dominate Electrochemistry of Carbon Nanotubes. Chemistry—A European Journal, 2010. 16(36): p. 10946–10949.

    Google Scholar 

  16. Alwarappan, S., et al., Probing the electrochemical properties of graphene nanosheets for biosensing applications. The Journal of Physical Chemistry C, 2009. 113(20): p. 8853–8857.

    Google Scholar 

  17. Ambrosi, A. and M. Pumera, Stacked graphene nanofibers for electrochemical oxidation of DNA bases. Physical Chemistry Chemical Physics, 2010. 12(31): p. 8943–8947.

    Google Scholar 

  18. Lu, J., et al., Simple Fabrication of a Highly Sensitive Glucose Biosensor Using Enzymes Immobilized in Exfoliated Graphite Nanoplatelets Nafion Membrane. Chemistry of Materials, 2007. 19(25): p. 6240–6246.

    Google Scholar 

  19. Zhou, H., et al., Noncovalent attachment of NAD + cofactor onto carbon nanotubes for preparation of integrated dehydrogenase-based electrochemical biosensors. Langmuir, 2010. 26(8): p. 6028–6032.

    Google Scholar 

  20. Guiseppi-Elie, A., C. Lei, and R.H. Baughman, Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology, 2002. 13(5): p. 559.

    Google Scholar 

  21. Liang, W. and Y. Zhuobin, Direct electrochemistry of glucose oxidase at a gold electrode modified with single-wall carbon nanotubes. Sensors, 2003. 3(12): p. 544–554.

    Google Scholar 

  22. Tsai, Y.-C., S.-C. Li, and J.-M. Chen, Cast Thin Film Biosensor Design Based on a Nafion Backbone, a Multiwalled Carbon Nanotube Conduit, and a Glucose Oxidase Function. Langmuir, 2005. 21(8): p. 3653–3658.

    Google Scholar 

  23. Zhou, D.-M., H.-X. Ju, and H.-Y. Chen, Catalytic oxidation of dopamine at a microdisk platinum electrode modified by electrodeposition of nickel hexacyanoferrate and Nafion®. Journal of Electroanalytical Chemistry, 1996. 408(1–2): p. 219–223.

    Google Scholar 

  24. Carrara, S., et al., Remote System for Monitoring Animal Models With Single-Metabolite Bio-Nano-Sensors. Sensors Journal, IEEE, 2013. 13(3): p. 1018–1024.

    Google Scholar 

  25. Wang, H.S., et al., Highly selective and sensitive determination of dopamine using a Nafion/carbon nanotubes coated poly(3-methylthiophene) modified electrode. Biosensors and Bioelectronics, 2006. 22(5): p. 664–669.

    Google Scholar 

  26. Chen, X., et al., Electrochemiluminescence Biosensor for Glucose Based on Graphene/Nafion/GOD Film Modified Glassy Carbon Electrode. Electroanalysis, 2010. 22(20): p. 2347–2352.

    Google Scholar 

  27. Qiu, J.D., et al., Amperometric sensor based on ferrocene-modified multiwalled carbon nanotube nanocomposites as electron mediator for the determination of glucose. Analytical Biochemistry, 2009. 385(2): p. 264–269.

    Google Scholar 

  28. Zhang, M., A. Smith, and W. Gorski, Carbon Nanotube−Chitosan System for Electrochemical Sensing Based on Dehydrogenase Enzymes. Analytical Chemistry, 2004. 76(17): p. 5045–5050.

    Google Scholar 

  29. Kang, X., et al., Glucose Oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing. Biosensors and Bioelectronics, 2009. 25(4): p. 901–905.

    Google Scholar 

  30. Cai, C. and J. Chen, Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Analytical Biochemistry, 2004. 332(1): p. 75–83.

    Google Scholar 

  31. Yan, Q., et al., Voltammetric Determination of Uric Acid with a Glassy Carbon Electrode Coated by Paste of Multiwalled Carbon Nanotubes and Ionic Liquid. Electroanalysis, 2006. 18(11): p. 1075–1080.

    Google Scholar 

  32. Pihel, K., Q.D. Walker, and R.M. Wightman, Overoxidized Polypyrrole-Coated Carbon Fiber Microelectrodes for Dopamine Measurements with Fast-Scan Cyclic Voltammetry. Analytical Chemistry, 1996. 68(13): p. 2084–2089.

    Google Scholar 

  33. Luo, X.-L., et al., Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application. Chemical communications, 2005(16): p. 2169–2171.

    Google Scholar 

  34. Chen, L., et al., Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochemistry communications, 2011. 13(2): p. 133–137.

    Google Scholar 

  35. J Low, C., et al., Electrochemical approaches to the production of graphene flakes and their potential applications. Carbon, 2012.

    Google Scholar 

  36. Gao, M., L. Dai, and G.G. Wallace, Biosensors Based on Aligned Carbon Nanotubes Coated with Inherently Conducting Polymers. Electroanalysis, 2003. 15(13): p. 1089–1094.

    Google Scholar 

  37. Yu, D. and L. Dai, Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors. The Journal of Physical Chemistry Letters, 2009. 1(2): p. 467–470.

    Google Scholar 

  38. Gutés, A., C. Carraro, and R. Maboudian, Single-layer CVD-grown graphene decorated with metal nanoparticles as a promising biosensing platform. Biosensors and Bioelectronics, 2012. 33(1): p. 56–59.

    Google Scholar 

  39. Wang, Z., M. Shoji, and H. Ogata, Electrochemical determination of NADH based on MPECVD carbon nanosheets. Talanta, 2012. 99(0): p. 487–491.

    Google Scholar 

  40. Chen, Y.-S., J.-H. Huang, and C.-C. Chuang, Glucose biosensor based on multiwalled carbon nanotubes grown directly on Si. Carbon, 2009. 47(13): p. 3106–3112.

    Google Scholar 

  41. Park, S., et al., Vertically Aligned Carbon Nanotube Electrodes Directly Grown on a Glassy Carbon Electrode. ACS nano, 2011. 5(9): p. 7061–7068.

    Google Scholar 

  42. Martin-Fernandez, I., et al., Vertically aligned multi-walled carbon nanotube growth on platinum electrodes for bio-impedance applications. Microelectronic engineering, 2009. 86(4): p. 806–808.

    Google Scholar 

  43. Zheng, D., J. Ye, and W. Zhang, Some Properties of Sodium Dodecyl Sulfate Functionalized Multiwalled Carbon Nanotubes Electrode and Its Application on Detection of Dopamine in the Presence of Ascorbic Acid. Electroanalysis, 2008. 20(16): p. 1811–1818.

    Google Scholar 

  44. Tominaga, M., S. Nomura, and I. Taniguchi, d-Fructose detection based on the direct heterogeneous electron transfer reaction of fructose dehydrogenase adsorbed onto multi-walled carbon nanotubes synthesized on platinum electrode. Biosensors and Bioelectronics, 2009. 24(5): p. 1184–1188.

    Google Scholar 

  45. Lin, Y., et al., Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Letters, 2004. 4(2): p. 191–195.

    Google Scholar 

  46. Brownson, D.A., M. Gómez-Mingot, and C.E. Banks, CVD graphene electrochemistry: biologically relevant molecules. Physical Chemistry Chemical Physics, 2011. 13(45): p. 20284–20288.

    Google Scholar 

  47. Shang, N.G., et al., Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with Sharp Edge Planes. Advanced Functional Materials, 2008. 18(21): p. 3506–3514.

    Google Scholar 

  48. Wang, G., et al., Non-enzymatic electrochemical sensing of glucose. Microchimica Acta, 2013. 180(3–4): p. 161–186.

    Google Scholar 

  49. Gelbert, M.B. and D.J. Curran, Alternating current voltammetry of dopamine and ascorbic acid at carbon paste and stearic acid modified carbon paste electrodes. Analytical Chemistry, 1986. 58(6): p. 1028–1032.

    Google Scholar 

  50. Rodríguez, M.C., et al., Highly selective determination of uric acid in the presence of ascorbic acid at glassy carbon electrodes modified with carbon nanotubes dispersed in polylysine. Sensors and Actuators B: Chemical, 2008. 134(2): p. 559–565.

    Google Scholar 

  51. Wang, Y., et al., Application of graphene-modified electrode for selective detection of dopamine. Electrochemistry communications, 2009. 11(4): p. 889–892.

    Google Scholar 

  52. Yuan, D., et al., An ECL sensor for dopamine using reduced graphene oxide/multiwall carbon nanotubes/gold nanoparticles. Sensors and Actuators B: Chemical, 2014. 191: p. 415–420.

    Google Scholar 

  53. Davis, J.J., et al., Chemical and Biochemical Sensing with Modified Single Walled Carbon Nanotubes. Chemistry—A European Journal, 2003. 9(16): p. 3732–3739.

    Google Scholar 

  54. Shan, C., et al., Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene. Analytical Chemistry, 2009. 81(6): p. 2378–2382.

    Google Scholar 

  55. Deng, L., et al., A sensitive NADH and glucose biosensor tuned by visible light based on thionine bridged carbon nanotubes and gold nanoparticles multilayer. Biosensors and Bioelectronics, 2008. 24(4): p. 951–957.

    Google Scholar 

  56. Tang, H., et al., Amperometric glucose biosensor based on adsorption of glucose oxidase at platinum nanoparticle-modified carbon nanotube electrode. Analytical Biochemistry, 2004. 331(1): p. 89–97.

    Google Scholar 

  57. Wang, J. and M. Musameh, Enzyme-dispersed carbon-nanotube electrodes: a needle microsensor for monitoring glucose. Analyst, 2003. 128(11): p. 1382–1385.

    Google Scholar 

  58. Kang, X., et al., A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold–platinum alloy nanoparticles/multiwall carbon nanotubes. Analytical Biochemistry, 2007. 369(1): p. 71–79.

    Google Scholar 

  59. Liu, J., et al., Achieving Direct Electrical Connection to Glucose Oxidase Using Aligned Single Walled Carbon Nanotube Arrays. Electroanalysis, 2005. 17(1): p. 38–46.

    Google Scholar 

  60. Patolsky, F., Y. Weizmann, and I. Willner, Long-Range Electrical Contacting of Redox Enzymes by SWCNT Connectors. Angewandte Chemie International Edition, 2004. 43(16): p. 2113–2117.

    Google Scholar 

  61. Gouveia-Caridade, C., R. Pauliukaite, and C. Brett, Development of electrochemical oxidase biosensors based on carbon nanotube-modified carbon film electrodes for glucose and ethanol. Electrochimica Acta, 2008. 53(23): p. 6732–6739.

    Google Scholar 

  62. Jiang, X., et al., Electrochemiluminescence of luminol enhanced by the synergetic catalysis of hemin and silver nanoparticles for sensitive protein detection. Biosensors and Bioelectronics, 2014. 54: p. 20–26.

    Google Scholar 

  63. Yan, Y.M., O. Yehezkeli, and I. Willner, Integrated, Electrically Contacted NAD (P) + ‐Dependent Enzyme–Carbon Nanotube Electrodes for Biosensors and Biofuel Cell Applications. Chemistry-A European Journal, 2007. 13(36): p. 10168–10175.

    Google Scholar 

  64. Zhao, Y.-D., et al., Direct electron transfer of glucose oxidase molecules adsorbed onto carbon nanotube powder microelectrode. Analytical Sciences, 2002. 18(8): p. 939–941.

    Google Scholar 

  65. Jiang, X., et al., An ultrasensitive luminol cathodic electrochemiluminescence immunosensor based on glucose oxidase and nanocomposites: Graphene–carbon nanotubes and gold-platinum alloy. Analytica Chimica Acta, 2013. 783: p. 49–55.

    Google Scholar 

  66. Zhang, M., et al., Carbon Nanotube-Modified Carbon Fiber Microelectrodes for In Vivo Voltammetric Measurement of Ascorbic Acid in Rat Brain. Analytical Chemistry, 2007. 79(17): p. 6559–6565.

    Google Scholar 

  67. McNaught, A.D., Wilkinson, A., Eds., IUPAC Compendium of Chemical Terminology, 2nd ed., Oxford, U.K: Blackwell Science.

    Google Scholar 

  68. Hercules, D.M., Chemiluminescence resulting from electrochemically generated species. Science, 1964. 145(3634): p. 808–809.

    Google Scholar 

  69. Visco, R.E. and E.A. Chandross, Electroluminescence in solutions of aromatic hydrocarbons. Journal of the American Chemical Society, 1964. 86(23): p. 5350–5351.

    Google Scholar 

  70. Santhanam, K. and A.J. Bard, Chemiluminescence of electrogenerated 9, 10-Diphenylanthracene anion radical1. Journal of the American Chemical Society, 1965. 87(1): p. 139–140.

    Google Scholar 

  71. Yin, X.-B., S. Dong, and E. Wang, Analytical applications of the electrochemiluminescence of tris (2, 2ʹ-bipyridyl) ruthenium and its derivatives. TrAC Trends in Analytical Chemistry, 2004. 23(6): p. 432–441.

    Google Scholar 

  72. Bard, A.J., Electrogenerated chemiluminescence. 2004: CRC Press.

    Google Scholar 

  73. Zoski, C.G., Miao, W. In Handbook of electrochemistry. 2007: Elsevier.

    Google Scholar 

  74. Kulmala, S. and J. Suomi, Current status of modern analytical luminescence methods. Analytica Chimica Acta, 2003. 500(1): p. 21–69.

    Google Scholar 

  75. Roche Diagnostics Corp., w.r.c.

    Google Scholar 

  76. Wilson, R., C. Clavering, and A. Hutchinson, Electrochemiluminescence enzyme immunoassays for TNT and pentaerythritol tetranitrate. Analytical Chemistry, 2003. 75(16): p. 4244–4249.

    Google Scholar 

  77. Meso Scale Discovery, w.m.c.

    Google Scholar 

  78. Bard, A.J.D., J. D.; Leland, J. K.; Sigal, G. B.; Wilbur, J. L.; Wohlsatdter, J. N., Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, ed. R.A. Meyers, Ed. Vol. 11. New York: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Demarchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Taurino, I., Sanginario, A., De Micheli, G., Demarchi, D., Carrara, S. (2015). Carbon Nanomaterials for Electrochemical and Electrochemiluminescent Medical Sensors. In: Demarchi, D., Tagliaferro, A. (eds) Carbon for Sensing Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-08648-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08648-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08647-7

  • Online ISBN: 978-3-319-08648-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics