Skip to main content

Enhancing the Surface Sensitivity and Selectivity: Functionalization of Carbon Nanomaterials

  • Chapter
  • First Online:
Carbon for Sensing Devices

Abstract

Carbon nanomaterials represent a major area of transducers in (bio)chemical sensors. In the field, one common goal is to improve the analytical performances: the sensitivity, the selectivity and the stability. Such parameters are indeed mandatory to validate the sensor. Although carbon nanomaterials are very sensitive to their chemical surrounding, their lack of selectivity requires the use of a selective recognition element. Here, the functionalization process demonstrates to play a key role in producing such devices. Several approaches have been reported over the last decade within a broad range of detection techniques. In the present chapter book, we consider the analytical parameters of electrochemical sensors from the perspective of the chemical functionalization methodology. The chapter covers a brief introduction where the main challenges for a suitable functionalization process are described. Then, the two main functionalization strategies are treated: the covalent and the non-covalent approaches. A brief account on the characterization of functionalization is given before presenting the concluding remarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Singh P, Campidelli S, Giordani S, Bonifazi D, Bianco A, Prato M (2009) Organic functionalisation and characterisation of single-walled carbon nanotubes. Chem Soc Rev 38:2214–30

    Article  Google Scholar 

  2. Karousis N, Tagmatarchis N, Tasis D (2010) Current progress on the chemical modification of carbon nanotubes. Chem Rev 110:5366–97

    Article  Google Scholar 

  3. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112:6156–214

    Article  Google Scholar 

  4. Chua CK, Pumera M (2013) Covalent chemistry on graphene. Chem Soc Rev 42:3222–33

    Article  Google Scholar 

  5. Chen D, Feng H, Li J (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112:6027–53

    Article  Google Scholar 

  6. Lin Y, Lu F, Tu Y, Ren Z (2004) Glucose biosensors based on carbon nanotube Nanoelectrode ensembles. Nano Lett 4:191–195

    Article  Google Scholar 

  7. Patolsky F, Weizmann Y, Willner I (2004) Long-range electrical contacting of redox enzymes by SWCNT connectors. Angew Chem Int Ed Engl 43:2113–7

    Google Scholar 

  8. Withey GD, Lazareck a D, Tzolov MB, Yin A, Aich P, Yeh JI, Xu JM (2006) Ultra-high redox enzyme signal transduction using highly ordered carbon nanotube array electrodes. Biosens Bioelectron 21:1560–5

    Article  Google Scholar 

  9. Li J, Wang Y-B, Qiu J-D, Sun D-C, Xia X-H (2005) Biocomposites of covalently linked glucose oxidase on carbon nanotubes for glucose biosensor. Anal Bioanal Chem 383:918–22

    Article  Google Scholar 

  10. Kim JH, Song M-J, Lee CJ, Lee J-H, Kim J-H, Min NK (2013) A comparative study of electrochemical and biointerfacial properties of acid- and plasma-treated single-walled carbon-nanotube-film electrode systems for use in biosensors. Carbon N Y 52:398–407

    Article  Google Scholar 

  11. Liu Y, Yu D, Zeng C, Miao Z, Dai L (2010) Biocompatible graphene oxide-based glucose biosensors. Langmuir 26:6158–60

    Article  Google Scholar 

  12. Dubuisson E, Yang Z, Loh KP (2011) Optimizing label-free DNA electrical detection on graphene platform. Anal Chem 83:2452–60

    Article  Google Scholar 

  13. Li J, Guo L-R, Gao W, Xia X-H, Zheng L-M (2009) Enhanced electrochemiluminescence efficiency of Ru(II) derivative covalently linked carbon nanotubes hybrid. Chem Commun (Camb) 7545–7

    Google Scholar 

  14. Morton J, Havens N, Mugweru A, Wanekaya AK (2009) Detection of trace heavy metal ions using carbon nanotube-modified electrodes. Electroanalysis 21:1597–1603

    Article  Google Scholar 

  15. Parra EJ, Blondeau P, Crespo G A, Rius FX (2011) An effective nanostructured assembly for ion-selective electrodes. An ionophore covalently linked to carbon nanotubes for Pb2+ determination. Chem Commun (Camb) 47:2438–40

    Google Scholar 

  16. Stine R, Robinson JT, Sheehan PE, Tamanaha CR (2010) Real-time DNA detection using reduced graphene oxide field effect transistors. Adv Mater 22:5297–300

    Article  Google Scholar 

  17. Bahr JL, Yang J, Kosynkin D V., Bronikowski MJ, Smalley RE, Tour JM (2001) Functionalization of Carbon Nanotubes by Electrochemical reduction of aryl diazonium salts: a bucky paper electrode. J Am Chem Soc 123:6536–6542

    Article  Google Scholar 

  18. Marega R, Aroulmoji V, Dinon F, Vaccari L, Giordani S, Bianco A, Murano E, Prato M (2009) Diffusion-ordered NMR spectroscopy in the structural characterization of functionalized carbon nanotubes. J Am Chem Soc 131:9086–93

    Article  Google Scholar 

  19. Maroto A, Balasubramanian K, Burghard M, Kern K (2007) Functionalized metallic carbon nanotube devices for pH sensing. Chemphyschem 8:220–3

    Article  Google Scholar 

  20. Vlandas A, Kurkina T, Ahmad A, Kern K, Balasubramanian K (2010) Enzyme-free sugar sensing in microfluidic channels with an affinity-based single-wall carbon nanotube sensor. Anal Chem 82:6090–7

    Article  Google Scholar 

  21. Kong L, Wang J, Fu X, Zhong Y, Meng F, Luo T, Liu J (2010) p-Hexafluoroisopropanol phenyl covalently functionalized single-walled carbon nanotubes for detection of nerve agents. Carbon N Y 48:1262–1270

    Article  Google Scholar 

  22. Huang J, Ng AL, Piao Y, Chen C-F, Green A A, Sun C-F, Hersam MC, Lee CS, Wang Y (2013) Covalently functionalized double-walled carbon nanotubes combine high sensitivity and selectivity in the electrical detection of small molecules. J Am Chem Soc 135:2306–12

    Google Scholar 

  23. Tasca F, Harreither W, Ludwig R, Gooding JJ, Gorton L (2011) Cellobiose dehydrogenase aryl diazonium modified single walled carbon nanotubes: enhanced direct electron transfer through a positively charged surface. Anal Chem 83:3042–9

    Article  Google Scholar 

  24. Eissa S, L’Hocine L, Siaj M, Zourob M (2013) A graphene-based label-free voltammetric immunosensor for sensitive detection of the egg allergen ovalbumin. Analyst 138:4378–84

    Article  Google Scholar 

  25. Coates M, Griveau S, Bedioui F, Nyokong T (2012) Layer by Layer Electrode Surface Functionalisation Using Carbon Nanotubes, Electrochemical grafting of azide-alkyne functions and click Chemistry. Electroanalysis 24:1833–1838

    Article  Google Scholar 

  26. Sinitskii A, Dimiev A, Corley D A, Fursina A A, Kosynkin D V, Tour JM (2010) Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS Nano 4:1949–54

    Google Scholar 

  27. Wang F, Swager TM (2011) Diverse chemiresistors based upon covalently modified multiwalled carbon nanotubes. J Am Chem Soc 133:11181–93

    Article  Google Scholar 

  28. Dionisio M, Schnorr JM, Michaelis VK, Griffin RG, Swager TM, Dalcanale E (2012) Cavitand-functionalized SWCNTs for N-methylammonium detection. J Am Chem Soc 134:6540–3

    Article  Google Scholar 

  29. Zhao Y-L, Stoddart JF (2009) Noncovalent functionalization of single-walled carbon nanotubes. Acc Chem Res 42:1161–71

    Article  Google Scholar 

  30. Chen RJ, Zhang Y, Wang D, Dai H (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123:3838–9.

    Article  Google Scholar 

  31. Besteman K, Lee J-O, Wiertz FGM, Heering H a., Dekker C (2003) Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors. Nano Lett 3:727–730

    Google Scholar 

  32. Huang Y, Dong X, Shi Y, Li CM, Li L-J, Chen P (2010) Nanoelectronic biosensors based on CVD grown graphene. Nanoscale 2:1485–8

    Article  Google Scholar 

  33. Okuno J, Maehashi K, Kerman K, Takamura Y, Matsumoto K, Tamiya E (2007) Label-free immunosensor for prostate-specific antigen based on single-walled carbon nanotube array-modified microelectrodes. Biosens Bioelectron 22:2377–81

    Article  Google Scholar 

  34. García-Aljaro C, Cella LN, Shirale DJ, Park M, Muñoz FJ, Yates M V, Mulchandani A (2010) Carbon nanotubes-based chemiresistive biosensors for detection of microorganisms. Biosens Bioelectron 26:1437–41

    Article  Google Scholar 

  35. Zhao Y-L, Hu L, Stoddart JF, Grüner G (2008) Pyrenecyclodextrin-decorated single-walled carbon nanotube field-effect transistors as chemical sensors. Adv Mater 20:1910–1915

    Article  Google Scholar 

  36. Hu W, Lu Z, Liu Y, Li CM (2010) In situ surface plasmon resonance investigation of the assembly process of multiwalled carbon nanotubes on an alkanethiol self-assembled monolayer for efficient protein immobilization and detection. Langmuir 26:8386–91

    Article  Google Scholar 

  37. Goff A Le, Moggia F, Debou N, Jegou P, Artero V, Fontecave M, Jousselme B, Palacin S (2010) Facile and tunable functionalization of carbon nanotube electrodes with ferrocene by covalent coupling and π-stacking interactions and their relevance to glucose bio-sensing. J Electroanal Chem 641:57–63

    Article  Google Scholar 

  38. Liu J, Kong N, Li A, Luo X, Cui L, Wang R, Feng S (2013) Graphene bridged enzyme electrodes for glucose biosensing application. Analyst 138:2567–75

    Article  Google Scholar 

  39. Mann J A, Alava T, Craighead HG, Dichtel WR (2013) Preservation of antibody selectivity on graphene by conjugation to a tripod monolayer. Angew Chem Int Ed Engl 52:3177–80

    Google Scholar 

  40. Shim M, Shi Kam NW, Chen RJ, Li Y, Dai H (2002) Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett 2:285–288

    Article  Google Scholar 

  41. Chen RJ, Bangsaruntip S, Drouvalakis K A, Kam NWS, Shim M, Li Y, Kim W, Utz PJ, Dai H (2003) Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc Natl Acad Sci U S A 100:4984–9

    Google Scholar 

  42. Star A, Gabriel JP, Bradley K, Grüner G (2003) Electronic detection of specific protein binding using nanotube FET devices. Nano Lett 3:459–463

    Article  Google Scholar 

  43. Martinez MT, Tseng Y-C, Ormategui N, Loinaz I, Eritja R, Bokor J (2009) Label-free DNA biosensors based on functionalized carbon nanotube field effect transistors. Nano Lett 9:530–6

    Article  Google Scholar 

  44. Haque A-MJ, Park H, Sung D, Jon S, Choi S-Y, Kim K (2012) An electrochemically reduced graphene oxide-based electrochemical immunosensing platform for ultrasensitive antigen detection. Anal Chem 84:1871–8

    Article  Google Scholar 

  45. Wang J, Musameh M, Lin Y (2003) Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. J Am Chem Soc 125:2408–9

    Article  Google Scholar 

  46. Lu J, Drzal LT, Worden RM, Lee I (2007) Simple fabrication of a highly sensitive glucose biosensor using enzymes immobilized in exfoliated graphite nanoplatelets nafion membrane. Chem Mater 19:6240–6246

    Article  Google Scholar 

  47. Wang F, Yang Y, Swager TM (2008) Molecular recognition for high selectivity in carbon nanotube/polythiophene chemiresistors. Angew Chem Int Ed Engl 47:8394–6

    Google Scholar 

  48. Haddad R, Cosnier S, Maaref a, Holzinger M (2009) Non-covalent biofunctionalization of single-walled carbon nanotubes via biotin attachment by π-stacking interactions and pyrrole polymerization. Analyst 134:2412–8

    Google Scholar 

  49. Zhang M, Smith A, Gorski W (2004) Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal Chem 76:5045–50

    Article  Google Scholar 

  50. Zhang M, Gorski W (2005) Electrochemical sensing based on redox mediation at carbon nanotubes. Anal Chem 77:3960–5

    Article  Google Scholar 

  51. Kang X, Wang J, Wu H, Aksay I A, Liu J, Lin Y (2009) Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron 25:901–5

    Google Scholar 

  52. Cella LN, Chen W, Myung N V, Mulchandani A (2010) Single-walled carbon nanotube-based chemiresistive affinity biosensors for small molecules: ultrasensitive glucose detection. J Am Chem Soc 132:5024–6

    Article  Google Scholar 

  53. Martínez MT, Tseng Y, González M, Bokor J (2012) Streptavidin as CNTs and DNA linker for the specific electronic and optical detection of DNA hybridization. J Phys Chem C 116:22579–22586

    Article  Google Scholar 

  54. Mao S, Lu G, Yu K, Bo Z, Chen J (2010) Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates. Adv Mater 22:3521–6

    Article  Google Scholar 

  55. Dong X, Shi Y, Huang W, Chen P, Li L-J (2010) Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv Mater 22:1649–53

    Article  Google Scholar 

  56. Du D, Wang L, Shao Y, Wang J, Engelhard MH, Lin Y (2011) Functionalized graphene oxide as a nanocarrier in a multienzyme labeling amplification strategy for ultrasensitive electrochemical immunoassay of phosphorylated p 53 (S392). Anal Chem 83:746–52

    Article  Google Scholar 

  57. Zhang Z, Luo L, Zhu L, Ding Y, Deng D, Wang Z (2013) Aptamer-linked biosensor for thrombin based on AuNPs/thionine-graphene nanocomposite. Analyst 138:5365–70

    Article  Google Scholar 

  58. Düzgün A, Imran H, Levon K, Rius FX (2013) Protein detection with potentiometric aptasensors: a comparative study between polyaniline and single-walled carbon nanotubes transducers. ScientificWorldJournal 2013:282756

    Article  Google Scholar 

  59. Lerner MB, Dailey J, Goldsmith BR, Brisson D, Johnson A TC (2013) Detecting Lyme disease using antibody-functionalized single-walled carbon nanotube transistors. Biosens Bioelectron 45:163–7

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the Universitat Rovira i Virgili of Tarragona and Spanish Ministry of Science and Innovation (grant CTQ2010-18717) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Blondeau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Blondeau, P. (2015). Enhancing the Surface Sensitivity and Selectivity: Functionalization of Carbon Nanomaterials. In: Demarchi, D., Tagliaferro, A. (eds) Carbon for Sensing Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-08648-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08648-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08647-7

  • Online ISBN: 978-3-319-08648-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics