Skip to main content

Introduction to Carbon Materials

  • Chapter
  • First Online:
Carbon for Sensing Devices
  • 1227 Accesses

Abstract

Our own existence witnesses the peculiar role played by carbon among all atoms of the periodic table. The energy levels of the various bonding hybridizations of the carbon atom are so close that different configurations can exist in normal earth environments, bringing about life. The various hybridizations have an impact on the structure and properties of inorganic carbon based materials too. In this chapter we will review this last subject looking at the various carbon structures that arise from the different local bonding configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pierson H. O., Handbook of Carbon, Graphite, Diamond and Fullerenes: Properties, Processing and Applications, (1993), NOYES Publications-New Jersy, USA.

    Google Scholar 

  2. Osipov V. Y., Enoki T., Takai K., Takahara K., Endo M., Hayashi T., Hishiyama Y., Kaburagi Y. and Vul A. Y, Magnetic and High Resolution Tem Studies of Nanographite Derived from Nanodiamond, Carbon 44 (2006)1225.

    Google Scholar 

  3. Hirsch Andreas, The Era of Carbon Allotropes, Nature Materials 9 (2010)868.

    Google Scholar 

  4. Lagow R. J., Kampa J. J., Wei H. C., Battle S. L., Genge J. W., Laude D. A., Harper C. J., Bau R., Stevens R. C., Haw J. F. and Munson E., Synthesis of Linear Acetylenic Carbon—the Sp Carbon Allotrope, Science 267 (1995)362.

    Google Scholar 

  5. Tonkov E. Yu High Pressure Phase Transformations (1992), CRC Press-Philadelphia, USA.

    Google Scholar 

  6. Scarselli M., Castrucci P. and De Crescenzi M., Electronic and Optoelectronic Nano-Devices Based on Carbon Nanotubes, J Phys Condens Matter 24 (2012)313202.

    Google Scholar 

  7. Frondel Clifford and Marvin Ursula B., Lonsdaleite, a Hexagonal Polymorph of Diamond, Nature 214 (1967)587.

    Google Scholar 

  8. Pan Zicheng, Sun Hong, Zhang Yi and Chen Changfeng, Harder Than Diamond: Superior Indentation Strength of Wurtzite Bn and Lonsdaleite, Physical Review Letters 102 (2009)055503.

    Google Scholar 

  9. Bundy F. P., Bassett W. A., Weathers M. S., Hemley R. J., Mao H. K. and Goncharov A. F., The Pressure-Temperature Phase and Transformation Diagram for Carbon; Updated through 1994, Carbon 34 (1996)141.

    Google Scholar 

  10. Cowie J. M. G., Polymers: Chemistry and Physics of Modern Materials, (1991), CRC Press-UK.

    Google Scholar 

  11. Nicholson John W., The Chemistry of Polymers, (2006), RSC Publishing-Cambridge.

    Google Scholar 

  12. Bhattacharya Amit, Rawlins James W. and Ray Paramita Polymer Grafting and Crosslinking, (2009), Wiley-New Jersey.

    Google Scholar 

  13. Park S. H. and Bandaru P. R., Improved Mechanical Properties of Carbon Nanotube/Polymer Composites through the Use of Carboxyl-Epoxide Functional Group Linkages, Polymer 51 (2010) 5071.

    Google Scholar 

  14. Castellino Micaela, Chiolerio Alessandro, Shahzad Muhammad Imran, Jagdale Pravin Vitthal and Tagliaferro Alberto, Electrical Conductivity Phenomena in an Epoxy Resin–Carbon-Based Materials Composite, Composites Part A: Applied Science and Manufacturing 61 (2014)108.

    Google Scholar 

  15. Gulotty R., Castellino M., Jagdale P., Tagliaferro A. and Balandin A. A., Effects of Functionalization on Thermal Properties of Single-Wall and Multi-Wall Carbon Nanotube–Polymer Nanocomposites, ACS Nano 7 (2013)5114.

    Google Scholar 

  16. Davis C. A., Amaratunga G. A. J. and Knowles K. M., Growth Mechanism and Cross-Sectional Structure of Tetrahedral Amorphous Carbon Thin Films, Physical Review Letters 80 (1998) 3280.

    Google Scholar 

  17. Schwan J., Ulrich S., Roth H., Ehrhardt H., Silva S. R. P., Robertson J., Samlenski R. and Brenn R., Tetrahedral Amorphous Carbon Films Prepared by Magnetron Sputtering and Dc Ion Plating, Journal of Applied Physics 79 (1996) 1416

    Google Scholar 

  18. Silva S. R. P., Properties of Amorphous Carbon, (2003), INSPEC -London.

    Google Scholar 

  19. Lee Seung-Hyeob, Lee Churl-Seung, Lee Seung-Cheol, Lee Kyu-Hwan and Lee Kwang-Ryeol, Structural Properties of Amorphous Carbon Films by Molecular Dynamics Simulation, Surface and Coatings Technology 177–178 (2004) 812.

    Google Scholar 

  20. Robertson J., Diamond-Like Amorphous Carbon, Materials Science and Engineering: R: Reports 37 (2002) 129.

    Google Scholar 

  21. Ravi S., Silva P., Xu Shi, Tay B. X., Tan H. S. and Milne W. I., Nanocrystallites in Tetrahedral Amorphous Carbon Films, Applied Physics Letters 69 (1996) 491.

    Google Scholar 

  22. Fung M. K., Lai K. H., Lai H. L., Chan C. Y., Wong N. B., Bello I., Lee C. S. and Lee S. T., Diamond-Like Carbon Coatings Applied to Hard Disks, Diamond and Related Materials 9 (2000) 815.

    Google Scholar 

  23. Lin Yu, Zhang Li, Mao Ho-Kwang, Chow Paul, Xiao Yuming, Baldini Maria, Shu Jinfu and Mao Wendy L., Amorphous Diamond: A High-Pressure Superhard Carbon Allotrope, Physical Review Letters 107 (2011) 175504.

    Google Scholar 

  24. Lewis J. C., Redfern B. and Cowlard F. C., Vitreous Carbon as a Crucible Material for Semiconductors, Solid-State Electronics 6 (1963) 251.

    Google Scholar 

  25. Harris P. J. F., Fullerene-Related Structure of Commercial Glassy Carbons, Philosophical Magazine 84 (2004) 3159.

    Google Scholar 

  26. Robertson J. And R. Smith., Carbon Black in Patty’s Toxicology, (1994), John Wiley & Sons, Inc.- New York.

    Google Scholar 

  27. Jacob W. and MoÃŒLler W., On the Structure of Thin Hydrocarbon Films, Applied Physics Letters 63 (1993) 1771.

    Google Scholar 

  28. Kroto H. W., Heath J. R., O’brien S. C., Curl R. F. and Smalley R. E., C60: Buckminsterfullerene, Nature 318 (1985)162.

    Google Scholar 

  29. Ijjima S., Helical Microtubules of Graphitic Carbon, Nature 354 (1991) 56

    Google Scholar 

  30. Rummeli Mark H., Ayala Paola and Pichler T., Carbon Nanotubes and Related Structures: Production and Formation in Carbon Nanotubes and Related Structures, (2010), Wiley-VCH-Weinheim.

    Google Scholar 

  31. Niyogi S., Hamon M. A., Hu H., Zhao B., Bhowmik P., Sen R., Itkis M. E. and Haddon R. C., Chemistry of Single-Walled Carbon Nanotubes, Accounts of Chemical Research 35 (2002) 1106.

    Google Scholar 

  32. Wallace P. R., The Band Theory of Graphite, Physical Review 71 (1947) 622.

    Google Scholar 

  33. Geim A. K. and Novoselov K. S., The Rise of Graphene, Nauret Material 6 (2007) 183.

    Google Scholar 

  34. Huang Xiao, Yin Zongyou, Wu Shixin, Qi Xiaoying, He Qiyuan, Zhang Qichun, Yan Qingyu, Boey Freddy and Zhang Hua, Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications, Small 7 (2011) 1876.

    Google Scholar 

  35. Bianco Alberto, Cheng Hui-Ming, Enoki Toshiaki, Gogotsi Yury, Hurt Robert H., Koratkar Nikhil, Kyotani Takashi, Monthioux Marc, Park Chong Rae, Tascon Juan M. D. and Zhang Jin, All in the Graphene Family—a Recommended Nomenclature for Two-Dimensional Carbon Materials, Carbon 65 (2013) 1.

    Google Scholar 

  36. Rode A. V., Gamaly E. G. and Davies B. L., Formation of Cluster-Assembled Carbon Nano-Foam by High-Repetition-Rate Laser Ablation, Applied Physics a-Materials Science & Processing 70 (2000) 135.

    Google Scholar 

  37. Rode A. V., Hyde S. T., Gamaly E. G., Elliman R. G., Mckenzie D. R. and Bulcock S., Structural Analysis of a Carbon Foam Formed by High Pulse-Rate Laser Ablation, Applied Physics A 6 (1999) 755.

    Google Scholar 

  38. Zani A., Dellasega D., Russo V. and Passoni M., Ultra-Low Density Carbon Foams Produced by Pulsed Laser Deposition, Carbon 56 (2013) 358.

    Google Scholar 

  39. Sheng X. L., Yan Q. B., Ye F., Zheng Q. R. and Su G., T-Carbon: A Novel Carbon Allotrope, Physical Review Letters 106 (2011) 155703.

    Google Scholar 

  40. Bernauer U., Openion on Carbon Black (Nano-Form), (2013), European Commission, Health & Consumers, Directorate-Luxembourg.

    Google Scholar 

  41. Robles-Hernández Francisco C. and Calderon H. A., Synthesis of Fullerene by Spark Plasma Sintering and Thermomechanical Transformation of Fullerene into Diamond on Fe-C Composites, MRS Online Proceedings Library 1243 (2009)

    Google Scholar 

  42. Galli Giulia Structure, Stability and Electronic Properties of Nanodiamonds in Computer-Based Modeling of Novel Carbon Systems and Their Properties Carbon Materials: Chemistry and Physics, (2010), Springer-London.

    Google Scholar 

  43. Krueger Anke and Lang Daniel, Functionality Is Key: Recent Progress in the Surface Modification of Nanodiamond, Advanced Functional Materials 22 (2012) 890.

    Google Scholar 

  44. Mochalin V. N., Shenderova O., Ho D. and Gogotsi Y., The Properties and Applications of Nanodiamonds, Nat Nanotechnol 7 (2012) 11.

    Google Scholar 

  45. Yang Sang, Drabold David and Adams James, Ab Initio Study of Diamond C(100) Surfaces, Physical Review B 48 (1993) 5261.

    Google Scholar 

  46. Walter S., Bernhardt J., Starke U., Heinz K., Maier F., Ristein J. and Ley L., Geometry of the (2 × 1) Reconstruction of Diamond (111), Journal of Physics: Condensed Matter 14 (2002) 3085.

    Google Scholar 

  47. Feng-Bin Liu, Jia-Dao Wang, Da-Rong Chen and Da-Yun Yan, Electronic Properties of Hydrogen- and Oxygen-Terminated Diamond Surfaces Exposed to the Air, Chinese Physics B 18 (2009) 2041.

    Google Scholar 

  48. Takeuchi D., Kato H., Ri G. S., Yamada T., Vinod P. R., Hwang D., Nebel C. E., Okushi H. and Yamasaki S., Direct Observation of Negative Electron Affinity in Hydrogen-Terminated Diamond Surfaces, Applied Physics Letters 86 (2005) 152103.

    Google Scholar 

  49. Bijnens Nathalie, Vermeeren Veronique, Daenen Michaël, Grieten Lars, Haenen Ken, Wenmackers Sylvia, Williams Oliver A., Ameloot Marcel, Vandeven Martin, Michiels Luc and Wagner Patrick, Synthetic Diamond Films as a Platform Material for Label-Free Protein Sensors, physica status solidi (a) 206 (2009) 520.

    Google Scholar 

  50. Jie H., Structures and Properties of Carbon Nanotubes in Carbon Nanotubes Science and Applications, (2004), CRC Press-London.

    Google Scholar 

  51. Banhart Florian, Kotakoski Jani and Krasheninnikov Arkady V., Structural Defects in Graphene, ACS Nano 5 (2010) 26.

    Google Scholar 

  52. In-Yup Jeon, Dong Wook Chang, Nanjundan Ashok Kumar and Jong-Beom Baek, Functionalization of Carbon Nanotubes in Carbon Nanotubes—Polymer Nanocomposites, (2011), Intech-Online

    Google Scholar 

  53. Wang Qing Hua and Strano Michael S., Carbon Nanotubes: A Bright Future for Defects, Nat Chem 5 (2013) 812.

    Google Scholar 

  54. Hirsch Andreas Functionalization of Single-Walled Carbon Nanotubes, Angewandte Chemie 41 (2002) 1853.

    Google Scholar 

  55. Jin Han and Chao Gao, Functionalization of Carbon Nanotubes and Other Nanocarbons by Azide Chemistry, Nano-Micro Letters 2 (2010) 213.

    Google Scholar 

  56. Reimer L. and Kohl H., Transmission Electron Microscopy: Physics of Image Formation, (2007), Springer-Münster.

    Google Scholar 

  57. Diaz Javier, Paolicelli Guido, Ferrer Salvador and Comin Fabio, Separation of the Sp3 and Sp2 Components in the C1s Photoemission Spectra of Amorphous Carbon Film, Physical Review B 54 (1995) 8064.

    Google Scholar 

  58. Hall B. D., Zanchet D. and Ugarte D., Estimating Nanoparticle Size from Diffraction Measurements, Journal of Applied Crystallography 33 (2000) 1335.

    Google Scholar 

  59. Dresselhaus M. S., Jorio A., Hofmann M., Dresselhaus G. and Saito R., Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy, Nano Lett 10 (2010) 751.

    Google Scholar 

  60. Dresselhaus M. S., Dresselhaus G., Saito R. and Jorio A., Raman Spectroscopy of Carbon Nanotubes, Physics Reports 409 (2005) 47.

    Google Scholar 

  61. Malard L. M., Pimenta M. A., Dresselhaus G. and Dresselhaus M. S., Raman Spectroscopy in Graphene, Physics Reports 473 (2009) 51.

    Google Scholar 

  62. Dresselhaus M. S., Dresselhaus G. and Eklund P. C., Raman Scattering in Fullerenes, Journal of Raman Spectroscopy 27 (1996) 351.

    Google Scholar 

  63. Ferrari Andrea C., Raman Spectroscopy of Graphene and Graphite: Disorder, Electron–Phonon Coupling, Doping and Nonadiabatic Effects, Solid State Communications 143 (2007) 47.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shahzad, M., Tagliaferro, A. (2015). Introduction to Carbon Materials. In: Demarchi, D., Tagliaferro, A. (eds) Carbon for Sensing Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-08648-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08648-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08647-7

  • Online ISBN: 978-3-319-08648-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics