Skip to main content

Phytopathogenic Nematodes

  • Chapter
  • First Online:
Principles of Plant-Microbe Interactions

Abstract

Soil is teeming with life, and rhizosphere soil is even more densely inhabited than bulk soil. In terms of biomass, bacteria and fungi are dominant groups, whereas nematodes (roundworms) are the most abundant Metazoans. Bulk soil, soil not directly affected by living plant roots, typically harbours around 2000–4000 nematodes per 100 g, while in the rhizosphere these numbers should be multiplied by a factor 3–5. This difference is not only explained by a higher density of plant parasites, as also bacterivorous and fungivorous nematodes benefit from the local boost of the bacterial and fungal community. Most nematodes feeding on higher plants are obligatory parasites. In this chapter four independent lineages of plant-parasitic nematodes are discussed. Facultative plant parasites often occupy basal positions within a lineage. Most, but not all, economically high impact plant parasites such a root knot, cyst and lesion nematodes belong to the most distal nematode clade (Clade 12; Holterman et al. Mol Biol Evol 23:1792–1800, 2006) . In this chapter, some of the latest insights on the evolution, the ecology and the biology of phytopathogenic nematodes will be covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguinaldo AMA, Turbeville JM, Linford LS et al (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–493

    Article  CAS  PubMed  Google Scholar 

  • Blaxter ML, De Ley P, Garey JR et al (1998) A molecular evolutionary framework for the phylum Nematoda. Nature 392:71–75

    Article  CAS  PubMed  Google Scholar 

  • Bongers T, Ferris H (1999) Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol Evol 14:224–228

    Article  PubMed  Google Scholar 

  • Chitwood BG, Chitwood MB (1933) The characters of a protonematode. J Parasitol 20:130

    Google Scholar 

  • Cotton JA, Lilley CJ, Jones LM et al (2014) The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode. Genome Biol 15:R43

    Article  PubMed Central  PubMed  Google Scholar 

  • De Ley P, Blaxter ML (2002) Systematic position and phylogeny. In: Lee DL (ed) The biology of nematodes. Taylor & Francis, London, pp 1–30

    Chapter  Google Scholar 

  • Doolittle WF (1998) You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet 14:307–311

    Article  CAS  PubMed  Google Scholar 

  • Dover GA, Linares AR, Bowen T et al (1993) Detection and quantification of concerted evolution and molecular drive. Method Enzymol 224:525–541

    CAS  Google Scholar 

  • Ellis RE, Sulston JE, Coulson AR (1986) The rDNA of C. elegans: sequence and structure. Nucleic Acids Res 14:2345–2364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ferris H, Bongers T, De Goede RGM (2001) A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Appl Soil Ecol 18:13–29

    Article  Google Scholar 

  • Floyd R, Abebe E, Papert A, Blaxter M (2002) Molecular barcodes for soil nematode identification. Mol Ecol 11:839–850

    Article  CAS  PubMed  Google Scholar 

  • Fu Z, Agudelo P, Wells CE (2012) Differential expression of a beta-1,4-endoglucanase induced by diet change in the foliar nematode Aphelenchoides fragariae. Phytopathology 102:804–811

    Article  CAS  PubMed  Google Scholar 

  • Goverse A, Overmars H, Engelbertink J et al (2000) Both induction and morphogenesis of cyst nematode feeding cells are mediated by auxin. Mol Plant Microbe Interact 13:1121–1129

    Article  CAS  PubMed  Google Scholar 

  • Holterman M, van der Wurff A, van den Elsen S et al (2006) Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Mol Biol Evol 23:1792–1800

    Article  CAS  PubMed  Google Scholar 

  • Hoth S, Stadler R, Sauer N et al (2008) Differential vascularization of nematode-induced feeding sites. Proc Natl Acad Sci U S A 105:12617–12622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jaubert S, Laffaire JB, Abad P et al (2002) A polygalacturonase of animal origin isolated from the root- knot nematode Meloidogyne incognita. FEBS Lett 522:109–112

    Article  CAS  PubMed  Google Scholar 

  • Karanastasi E, Wyss U, Brown DJF (2003) An in vitro examination of the feeding behaviour of Paratrichodorus anemones (Nematoda: Trichodoridae), with comments on the ability of the nematode to acquire and transmit Tobravirus particles. Nematology 5:421–434

    Article  Google Scholar 

  • Keen NT, Roberts PA (1998) Plant parasitic nematodes: digesting a page from the microbe book. Proc Natl Acad Sci U S A 95:4789–4790

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kikuchi T, Jones JT, Aikawa T et al (2004) A family of glycosyl hydrolase family 45 cellulases from the pine wood nematode Bursaphelenchus xylophilus. FEBS Lett 572:201–205

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi T, Cock PJA, Helder J et al (2014) Characterisation of the transcriptome of Aphelenchoides besseyi and identification of a GHF 45 cellulase. Nematology 16:99–107

    Article  CAS  Google Scholar 

  • Kyndt T, Haegeman A, Gheysen G (2008) Evolution of GHF5 endoglucanase gene structure in plant-parasitic nematodes: no evidence for an early domain shuffling event. BMC Evol Biol 8:305

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee C, Chronis D, Kenning C et al (2011) The novel cyst nematode effector protein 19C07 interacts with the Arabidopsis auxin influx transporter LAX3 to control feeding site development. Plant Physiol 155:866–880

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Loof PAA, Coomans A (1972) The oesophageal gland nuclei of Longidoridae (Dorylaimida). Nematologica 18:213–233

    Article  Google Scholar 

  • Lorenzen S (1981) Entwurf eines phylogenetischen systems der freilebenden Nematoden. Veröff Inst Meeresforsch Breme, Supplement 7:1–472

    Google Scholar 

  • Mitreva-Dautova M, Roze E, Overmars H et al (2006) A symbiont-independent endo-1,4-bata-xylanase from the plant-parasitic nematode Meloidogyne incognita. Mol Plant Microbe Interact 19:521–529

    Article  CAS  PubMed  Google Scholar 

  • Popeijus H, Overmars H, Jones J et al (2000) Enzymology: degradation of plant cell walls by a nematode. Nature 406:36–37

    Article  CAS  PubMed  Google Scholar 

  • Postma WJ, Slootweg EJ, Rehman S et al (2012) The effector SPRYSEC-19 of Globodera rostochiensis suppresses CC-NB-LRR-mediated disease resistance in plants. Plant Physiol 160:944–954

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qin L, Kudla U, Roze EHA et al (2004) A nematode expansin acting on plants. Nature 427:30.

    Article  CAS  PubMed  Google Scholar 

  • Rehman S, Butterbach P, Popeijus H et al (2009a) Identification and characterization of the most abundant cellulases in stylet secretions from Globodera rostochiensis. Phytopathology 99:194–202

    Google Scholar 

  • Rehman S, Postma W, Tytgat T et al (2009b) A secreted SPRY domain-containing protein (SPRYSEC) from the plant-parasitic nematode Globodera rostochiensis interacts with a CC-NB-LRR protein from a susceptible tomato. Mol Plant Microbe Interact 22:330–340

    Google Scholar 

  • Rybarczyk-Mydłowska K, Ruvimbo Maboreke H, Van Megen H et al (2012) Rather than by direct acquisition via lateral gene transfer, GHF5 cellulases were passed on from early Pratylenchidae to root-knot and cyst nematodes. BMC Evol Biol 12:221

    Article  PubMed Central  PubMed  Google Scholar 

  • Shinya R, Morisaka H, Kikuchi T (2013) Secretome analysis of the pine wood nematode Bursaphelenchus xylophilus reveals the tangled roots of parasitism and its potential for molecular mimicry. PLoS One 8(6):e67377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smant G, Stokkermans J, Yan YT et al (1998) Endogenous cellulases in animals: isolation of beta-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc Natl Acad Sci U S A 95:4906–4911

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trudgill DL, Blok VC (2001) Apomictic, polyphagous root-knot nematodes: exceptionally successful and damaging biotrophic root pathogens. Annu Rev Phytopathol 39:53–77

    Article  CAS  PubMed  Google Scholar 

  • Van Megen H, Van Den Elsen S, Holterman M et al (2009) A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences. Nematology 11:927–950

    Article  CAS  Google Scholar 

  • Wyss U, Lehmann H, Jank-Ladwig R (1980) Ultrastructure of modified root-tip cells in Ficus carica, induced by the ectoparasitic nematode Xiphinema index. J Cell Sc 41:193–208

    CAS  Google Scholar 

  • Yeates GW, Bongers T, De Goede RGM et al (1993) Feeding-habits in soil Nematode families and genera-an outline for soil ecologists. J Nematol 25:315–331

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zunke U (1990) Ectoparasitic feeding behaviour of the root lesion nematode, Pratylenchus penetrans, on root hairs of different host plants. Rev Nématol 13:331–337

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Helder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Helder, J. et al. (2015). Phytopathogenic Nematodes. In: Lugtenberg, B. (eds) Principles of Plant-Microbe Interactions. Springer, Cham. https://doi.org/10.1007/978-3-319-08575-3_11

Download citation

Publish with us

Policies and ethics