Skip to main content

Plant Pathogenic Fungi and Oomycetes

  • Chapter
  • First Online:
Principles of Plant-Microbe Interactions

Abstract

Fungi and Oomycetes are notorious plant pathogens and use similar strategies to infect plants. The majority of plants, however, is not infected by pathogens as they recognize pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors that mediate PAMP-triggered immunity (PTI) , a basal defense response effective against potential pathogens. Successful pathogens secrete effectors to suppress PTI and alter host plant physiology. In turn, plants have evolved immune receptors that recognize effectors, resulting in effector-triggered immunity (ETI) . ETI includes the hypersensitive response which is effective against biotrophic plant pathogens that require living cells to feed on. Other pathogens are hemi-biotrophic, which start infection as a biotroph, but after having colonized the host tissue can also feed on death tissue. Necrotrophic pathogens kill host tissue before they start to feed on it. Co-evolution between pathogens and their hosts had led to the development of numerous effectors produced by pathogens and corresponding resistance proteins in host plants, which has generated an arms race genetically described by the gene-for-gene concept. Resistance genes can now successfully be transferred to crop plants by classical breeding or as transgenes stapled into one cultivar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrios GN (2005) Plant pathology handbook, 5th edn. Elsevier, Amsterdam, 922 p

    Google Scholar 

  • Balmer D, Planchamp C, Mauch-Mani B (2013) On the move: induced resistance in monocots. J Exp Bot 64:1249–1261

    Article  CAS  PubMed  Google Scholar 

  • Brunner S, Hurni S, Streckeisen P et al (2010) Intragenic allele pyramiding combines different specificities of wheat Pm3 resistance alleles. Plant J 64:433–445

    Article  CAS  PubMed  Google Scholar 

  • Burdsall HH, Volk TJ (2008) Armillaria solidipes, an older name for the fungus called Armillaria ostoyae. N Am Fungi 3:261–267

    Article  Google Scholar 

  • De Jonge R, Thomma BPHJ (2009) Fungal LysM effectors: extinguishers of host immunity? Trends Microbiol 17:151–157

    Article  CAS  PubMed  Google Scholar 

  • De Jonge R, Van Esse HP, Kombrink A et al (2010) Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 329:953–955

    Article  CAS  PubMed  Google Scholar 

  • De Wit PJGM, Mehrabi R, Van den Burg HA et al (2009) Fungal effector proteins: past, present and future. Mol Plant Pathol 10:735–747

    Article  CAS  PubMed  Google Scholar 

  • De Wit PJGM, Van der Burgt A, Ökmen B et al (2012) The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry. PLoS Genet. doi:10.1371/journal.pgen.1003088

    Google Scholar 

  • Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–296

    Article  Google Scholar 

  • Hawksworth DL (1991) The fungal dimension of biodiversity -magnitude, significance, and conservation. Mycol Res 95:641–655

    Article  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Joosten MHAJ, De Wit PJGM (1999) The tomato-Cladosporium fulvum interaction: a versatile experimental system to study plant-pathogen interactions. Annu Rev Phytopathol 37:335–367

    Article  CAS  PubMed  Google Scholar 

  • Kombrink A, Thomma BPHJ (2013) LysM effectors: secreted proteins supporting fungal life. Plos Pathog 9:e1003769. doi:10.1371/journal.ppat.1003769

    Article  PubMed Central  PubMed  Google Scholar 

  • Liebrand TWH, van den Burg HA, Joosten MHAJ (2014) Two for all: receptor-associated kinases SOBIR1 and BAK1. Trends Plant Sci 19:123–132

    Article  CAS  PubMed  Google Scholar 

  • Lozano-Torres JL, Wilbers RHP, Gawronski P et al (2012) Dual disease resistance mediated by the immune receptor Cf-2 in tomato requires a common virulence target of a fungus and a nematode. Proc Natl Acad Sci U S A 109:10119–10124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Macho AP, Zipfel C (2014) Plant PRRs and the activation of innate immune signaling. Mol Cell 54:263–272. doi:10.1016/j.molcel.2014.03.028

    Article  CAS  PubMed  Google Scholar 

  • Marshall R, Kombrink A, Motteram J et al (2011) Analysis of two in planta expressed LysM effector homologs from the fungus Mycosphaerella graminicola reveals novel functional properties and varying contributions to virulence on wheat. Plant Physiol 156:756–769

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mentlak TA, Kombrink A, Shinya T et al (2012) Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell 24:322–335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Okmen B, Etalo DW, Joosten MHAJ et al (2013) Detoxification of α-tomatine by Cladosporium fulvum is required for full virulence on tomato. New Phytol 198:1203–1214

    Article  PubMed  Google Scholar 

  • Oort AJP (1944) Onderzoekingen over stuifbrand. II. Overgevoeligheid van tarwe voor stuifbrand (Ustilago tritici) with a summary: hypersensitiviness of wheat to loose smut. Tijdschr Planteziekten 50:73–106

    Google Scholar 

  • Rooney HCE, Van’t Klooster JW, Van der Hoorn RAL et al (2005) Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science 308:1783–1786

    Article  CAS  PubMed  Google Scholar 

  • Spanu PD (2012) The genomics of obligate (and nonobligate) biotrophs. Annu Rev Phytopathol 50:91–109

    Article  CAS  PubMed  Google Scholar 

  • Stergiopoulos I, De Wit PJGM (2009) Fungal effector proteins. Annu Rev Phytopathol 47:233–263

    Article  CAS  PubMed  Google Scholar 

  • Stergiopoulos I, van den Burg HA, Okmen B et al (2010) Tomato Cf resistance proteins mediate recognition of cognate homologous effectors from fungi pathogenic on dicots and monocots. Proc Natl Acad Sci U S A 107:7610–7615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takken FLW, Goverse A (2012) How to build a pathogen detector: structural basis of NB-LRR function. Curr Opin Plant Biol 15:375–384

    Article  CAS  PubMed  Google Scholar 

  • Thomma B, Nurnberger T, Joosten M (2011) Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23:4–15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van den Burg HA, Harrison SJ, Joosten MHAJ et al (2006) Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. Mol Plant Microbe Interact 19:1420–1430

    Article  CAS  PubMed  Google Scholar 

  • Van Esse HP, Bolton MD, Stergiopoulos I et al (2007) The chitin-binding Cladosporium fulvum effector protein Avr4 is a virulence factor. Mol Plant Microbe Interact 20:1092–1101

    Article  CAS  PubMed  Google Scholar 

  • Van Esse HP, Van’t Klooster JW, Bolton MD et al (2008) The Cladosporium fulvum virulence protein Avr2 inhibits host proteases required for basal defense. Plant Cell 20:1948–1963

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vleeshouwers VGAA, Oliver RP (2014) Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens. Mol Plant Microbe Interact 27:196–206

    Article  CAS  PubMed  Google Scholar 

  • Ward R (2007) The global threat posed by Ug99. Phytopathol 97: S136

    Google Scholar 

  • Zhao ZT, Liu HQ, Wang CF et al (2013) Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics 14:274. doi:10.1186/1471-2164-14-274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu SX, Li Y, Vossen JH et al (2012) Functional stacking of three resistance genes against Phytophthora infestans in potato. Transgenic Res 21:89–99

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre J. G. M. de Wit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Wit, P. (2015). Plant Pathogenic Fungi and Oomycetes. In: Lugtenberg, B. (eds) Principles of Plant-Microbe Interactions. Springer, Cham. https://doi.org/10.1007/978-3-319-08575-3_10

Download citation

Publish with us

Policies and ethics