Skip to main content

Fundamental Theory for Chemical Dissolution-Front Instability Problems in Fluid-Saturated Porous Media

  • Chapter
  • First Online:
Physical and Chemical Dissolution Front Instability in Porous Media

Part of the book series: Lecture Notes in Earth System Sciences ((LNESS))

  • 587 Accesses

Abstract

When fresh pore-fluid enters a solute-saturated porous medium, where the concentration of the solute (i.e. aqueous mineral) reaches its equilibrium concentration, the concentration of the aqueous mineral is diluted so that the solid part of the solute (i.e. solid mineral) is dissolved to maintain the equilibrium state of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bear J (1972) Dynamics of fluids in porous media. American Elsevier, New York

    Google Scholar 

  • Chadam J, Hoff D, Merino E, Ortoleva P, Sen A (1986) Reactive infiltration instabilities. IMA J Appl Math 36:207–221

    Article  Google Scholar 

  • Chadam J, Ortoleva P, Sen A (1988) A weekly nonlinear stability analysis of the reactive infiltration interface. IMA J Appl Math 48:1362–1378

    Google Scholar 

  • Chen JS, Liu CW (2002) Numerical simulation of the evolution of aquifer porosity and species concentrations during reactive transport. Comput Geosci 28:485–499

    Article  Google Scholar 

  • Detournay E, Cheng AHD (1993) Fundamentals of poroelasticity. In: Hudson JA, Fairhurst C (eds) Comprehensive rock engineering, Vol. 2: analysis and design methods. Pergamon Press, New York

    Google Scholar 

  • Gow P, Upton P, Zhao C, Hill K (2002) Copper-gold mineralization in the New Guinea: numerical modeling of collision, fluid flow and intrusion-related hydrothermal systems. Aust J Earth Sci 49:753–771

    Article  Google Scholar 

  • Lewis RW, Schrefler BA (1998) The finite element method in the static and dynamic deformation and consolidation of porous media. Wiley, New York

    Google Scholar 

  • Nield DA, Bejan A (1992) Convection in porous media. Springer, New York

    Book  Google Scholar 

  • Ormond A, Ortoleva P (2000) Numerical modeling of reaction-induced cavities in a porous rock. J Geophys Res 105:16737–16747

    Article  Google Scholar 

  • Ortoleva P, Chadam J, Merino E, Sen A (1987) Geochemical self-organization II: the reactive-infiltration instability. Am J Sci 287:1008–1040

    Article  Google Scholar 

  • Phillips OM (1991) Flow and reactions in permeable rocks. Cambridge University Press, Cambridge

    Google Scholar 

  • Raffensperger JP, Garven G (1995) The formation of unconformity-type uranium ore deposits: coupled hydrochemical modelling. Am J Sci 295:639–696

    Article  Google Scholar 

  • Schafer D, Schafer W, Kinzelbach W (1998a) Simulation of reactive processes related to biodegradation in aquifers: 1. Structure of the three-dimensional reactive transport model. J Contam Hydrol 31:167–186

    Article  Google Scholar 

  • Schafer D, Schafer W, Kinzelbach W (1998b) Simulation of reactive processes related to biodegradation in aquifers: 2. Model application to a column study on organic carbon degradation. J Contam Hydrol 31:187–209

    Article  Google Scholar 

  • Schaubs P, Zhao C (2002) Numerical modelling of gold-deposit formation in the Bendigo-Ballarat zone, Victoria. Aust J Earth Sci 49:1077–1096

    Article  Google Scholar 

  • Scheidegger AE (1974) The physics of flow through porous media. University of Toronto Press, Toronto

    Google Scholar 

  • Steefel CI, Lasaga AC (1990) Evolution of dissolution patterns: permeability change due to coupled flow and reaction. In: Melchior DC, Basset RL (eds.) Chemical modeling in aqueous systems II, American Chemistry Society Symposium Series, vol. 416, pp. 213–225

    Google Scholar 

  • Steefel CI, Lasaga AC (1994) A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems. Am J Sci 294:529–592

    Article  Google Scholar 

  • Turcotte DL, Schubert G (1982) Geodynamics: applications of continuum physics to geological problems. Wiley, New York

    Google Scholar 

  • Xu TF, Samper J, Ayora C, Manzano M, Custodio E (1999) Modelling of non-isothermal multi-component reactive transport in field scale porous media flow systems. J Hydrol 214:144–164

    Article  Google Scholar 

  • Xu TF, Apps JA, Pruess K (2004) Numerical simulation of CO2 disposal by mineral trapping in deep aquifers. Appl Geochem 19:917–936

    Article  Google Scholar 

  • Yeh GT, Tripathi VS (1991) A model for simulating transport of reactive multispecies components: model development and demonstration. Water Resour Res 27:3075–3094

    Article  Google Scholar 

  • Zhao C, Xu TP, Valliappan S (1994) Numerical modelling of mass transport problems in porous media: a review. Comput Struct 53:849–860

    Article  Google Scholar 

  • Zhao C, Hobbs BE, Mühlhaus HB (1998) Finite element modelling of temperature gradient driven rock alteration and mineralization in porous rock masses. Comput Methods Appl Mech Eng 165:175–187

    Article  Google Scholar 

  • Zhao C, Hobbs BE, Mühlhaus HB, Ord A (1999) Finite element analysis of flow patterns near geological lenses in hydrodynamic and hydrothermal systems. Geophys J Int 138:146–158

    Article  Google Scholar 

  • Zhao C, Hobbs BE, Walshe JL, Mühlhaus HB, Ord A (2001a) Finite element modeling of fluid-rock interaction problems in pore-fluid saturated hydrothermal/sedimentary basins. Comput Methods Appl Mech Eng 190:2277–2293

    Article  Google Scholar 

  • Zhao C, Hobbs BE, Mühlhaus HB, Ord A (2001b) Finite element modelling of rock alteration and metamorphic process in hydrothermal systems. Commun Numer Methods Eng 17:833–843

    Article  Google Scholar 

  • Zhao C, Lin G, Hobbs BE, Ord A, Wang Y, Mühlhaus HB (2003) Effects of hot intrusions on pore-fluid flow and heat transfer in fluid-saturated rocks. Comput Methods Appl Mech Eng 192:2007–2030

    Article  Google Scholar 

  • Zhao C, Hobbs BE, Ord A, Peng S, Mühlhaus HB, Liu L (2005) Numerical modeling of chemical effects of magma solidification problems in porous rocks. Int J Numer Meth Eng 64:709–728

    Article  Google Scholar 

  • Zhao C, Hobbs BE, Ord A, Hornby P (2006a) Chemical reaction patterns due to fluids mixing and focusing around faults in fluid-saturated porous rocks. J Geochem Explor 89:470–473

    Article  Google Scholar 

  • Zhao C, Hobbs BE, Hornby P, Ord A, Peng S (2006b) Numerical modelling of fluids mixing, heat transfer and non-equilibrium redox chemical reactions in fluid-saturated porous rocks. Int J Numer Meth Eng 66:1061–1078

    Article  Google Scholar 

  • Zhao C, Hobbs BE, Ord A, Hornby P, Peng S, Liu L (2007) Mineral precipitation associated with vertical fault zones: the interaction of solute advection, diffusion and chemical kinetics. Geofluids 7:3–18

    Article  Google Scholar 

  • Zhao C, Hobbs BE, Hornby P, Ord A, Peng S, Liu L (2008a) Theoretical and numerical analyses of chemical-dissolution front instability in fluid-saturated porous rocks. Int J Numer Anal Meth Geomech 32:1107–1130

    Article  Google Scholar 

  • Zhao C, Hobbs BE, Ord A, Hornby P, Peng S (2008b) Effect of reactive surface areas associated with different particle shapes on chemical-dissolution front instability in fluid-saturated porous rocks. Transp Porous Media 73:75–94

    Article  Google Scholar 

  • Zhao C, Hobbs BE, Ord A, Hornby P, Mühlhaus HB, Peng S (2008c) Theoretical and numerical analyses of pore-fluid-flow focused heat transfer around geological faults and large cracks. Comput Geotech 35:357–371

    Article  Google Scholar 

  • Zhao C, Hobbs BE, Ord A, Peng S (2010) Effects of mineral dissolution ratios on chemical-dissolution front instability in fluid-saturated porous media. Transp Porous Media 82:317–335

    Article  Google Scholar 

  • Zienkiewicz OC (1977) The finite element method. McGraw-Hill, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongbin Zhao .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhao, C. (2014). Fundamental Theory for Chemical Dissolution-Front Instability Problems in Fluid-Saturated Porous Media. In: Physical and Chemical Dissolution Front Instability in Porous Media. Lecture Notes in Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-08461-9_2

Download citation

Publish with us

Policies and ethics