Skip to main content

Meniscus

  • Chapter
  • First Online:
MRI of the Knee

Abstract

The menisci and their insertions into bone represent a fibrocartilaginous functional unit [1]. Their function is to distribute loads and to protect the cartilage and the subchondral bone. They measure approximately 35 mm in diameter and are divided into anterior horn, posterior horn, and body of meniscus. Both menisci are hypovascular and contain mainly water and a dense elaborate type I collagen network with a predominantly circumferential alignment [1]. The vascular supply is provided by branches of lateral, medial, and middle genicular arteries. A perimeniscal capillary plexus originating in the capsular and synovial tissues of the joint supplies the peripheral 10–33 % of the menisci [2, 3]. Both menisci are interconnected and are separately attached to the capsule and anchored to the adjacent bone structures. The tibial attachment of the menisci are known as the meniscal root ligaments. On MR images menisci are seen as homogeneous low-signal intensity structures on all sequences (Fig. 5.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Messner K, Gao J. The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment. J Anat. 1998;193(Pt 2):161–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Arnoczky SP, Warren RF. Microvasculature of the human meniscus. Am J Sports Med. 1982;10(2):90–5.

    Article  CAS  PubMed  Google Scholar 

  3. Gray JC. Neural and vascular anatomy of the menisci of the human knee. J Orthop Sports Phys Ther. 1999;29(1):23–30.

    Article  CAS  PubMed  Google Scholar 

  4. Ahmed AM, Burke DL. In-vitro measurement of static pressure distribution in synovial joints–part I: tibial surface of the knee. J Biomech Eng. 1983;105(3):216–25.

    Article  CAS  PubMed  Google Scholar 

  5. De Maeseneer M, et al. Three layers of the medial capsular and supporting structures of the knee: MR imaging-anatomic correlation. Radiographics. 2000;20(Spec No):S83–9.

    Article  PubMed  Google Scholar 

  6. Starok M, et al. Normal patellar retinaculum: MR and sonographic imaging with cadaveric correlation. AJR Am J Roentgenol. 1997;168(6):1493–9.

    Article  CAS  PubMed  Google Scholar 

  7. Fenn S, Datir A, Saifuddin A. Synovial recesses of the knee: MR imaging review of anatomical and pathological features. Skeletal Radiol. 2009;38(4):317–28.

    Article  CAS  PubMed  Google Scholar 

  8. Johnson DL, et al. Insertion-site anatomy of the human menisci: gross, arthroscopic, and topographical anatomy as a basis for meniscal transplantation. Arthroscopy. 1995;11(4):386–94.

    Article  CAS  PubMed  Google Scholar 

  9. Brody JM, et al. Lateral meniscus root tear and meniscus extrusion with anterior cruciate ligament tear. Radiology. 2006;239(3):805–10.

    Article  PubMed  Google Scholar 

  10. Anderson AF, Awh MH, Anderson CN. The anterior meniscofemoral ligament of the medial meniscus: case series. Am J Sports Med. 2004;32(4):1035–40.

    Article  PubMed  Google Scholar 

  11. de Abreu MR, et al. Anterior transverse ligament of the knee: MR imaging and anatomic study using clinical and cadaveric material with emphasis on its contribution to meniscal tears. Clin Imaging. 2007;31(3):194–201.

    Article  PubMed  Google Scholar 

  12. Sintzoff Jr SA, et al. Transverse geniculate ligament of the knee: appearance at plain radiography. Radiology. 1991;180(1):259.

    Article  PubMed  Google Scholar 

  13. Sanders TG, et al. Oblique meniscomeniscal ligament: another potential pitfall for a meniscal tear–anatomic description and appearance at MR imaging in three cases. Radiology. 1999;213(1):213–6.

    Article  CAS  PubMed  Google Scholar 

  14. Bolog N, Hodler J. MR imaging of the posterolateral corner of the knee. Skeletal Radiol. 2007;36(8):715–28.

    Article  PubMed  Google Scholar 

  15. Sussmann PS, et al. Development of the popliteomeniscal fasciculi in the fetal human knee joint. Arthroscopy. 2001;17(1):14–8.

    Article  CAS  PubMed  Google Scholar 

  16. Diamantopoulos A, et al. The posterolateral corner of the knee: evaluation under microsurgical dissection. Arthroscopy. 2005;21(7):826–33.

    Article  PubMed  Google Scholar 

  17. Johnson RL, De Smet AA. MR visualization of the popliteomeniscal fascicles. Skeletal Radiol. 1999;28(10):561–6.

    Article  CAS  PubMed  Google Scholar 

  18. Recondo JA, et al. Lateral stabilizing structures of the knee: functional anatomy and injuries assessed with MR imaging. Radiographics. 2000;20(Spec No):S91–102.

    Article  PubMed  Google Scholar 

  19. Heller L, Langman J. The menisco-femoral ligaments of the human knee. J Bone Joint Surg Br. 1964;46:307–13.

    CAS  PubMed  Google Scholar 

  20. Bozkurt M, et al. An anatomical study of the meniscofibular ligament. Knee Surg Sports Traumatol Arthrosc. 2004;12(5):429–33.

    Article  PubMed  Google Scholar 

  21. Chew FS. Medial meniscal flounce: demonstration on MR imaging of the knee. AJR Am J Roentgenol. 1990;155(1):199.

    Article  CAS  PubMed  Google Scholar 

  22. Park JS, Ryu KN, Yoon KH. Meniscal flounce on knee MRI: correlation with meniscal locations after positional changes. AJR Am J Roentgenol. 2006;187(2):364–70.

    Article  PubMed  Google Scholar 

  23. Silverman JM, Mink JH, Deutsch AL. Discoid menisci of the knee: MR imaging appearance. Radiology. 1989;173(2):351–4.

    Article  CAS  PubMed  Google Scholar 

  24. Samoto N, et al. Diagnosis of discoid lateral meniscus of the knee on MR imaging. Magn Reson Imaging. 2002;20(1):59–64.

    Article  PubMed  Google Scholar 

  25. Rosenberg TD, et al. Discoid lateral meniscus: case report of arthroscopic attachment of a symptomatic Wrisberg-ligament type. Arthroscopy. 1987;3(4):277–82.

    Article  CAS  PubMed  Google Scholar 

  26. Singh K, et al. MRI appearance of Wrisberg variant of discoid lateral meniscus. AJR Am J Roentgenol. 2006;187(2):384–7.

    Article  PubMed  Google Scholar 

  27. Mesgarzadeh M, et al. MR imaging of the knee: expanded classification and pitfalls to interpretation of meniscal tears. Radiographics. 1993;13(3):489–500.

    Article  CAS  PubMed  Google Scholar 

  28. Yaniv M, Blumberg N. The discoid meniscus. J Child Orthop. 2007;1(2):89–96.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Anderson MW. MR imaging of the meniscus. Radiol Clin North Am. 2002;40(5):1081–94.

    Article  PubMed  Google Scholar 

  30. El-Khoury GY, Usta HY, Berger RA. Meniscotibial (coronary) ligament tears. Skeletal Radiol. 1984;11(3):191–6.

    Article  CAS  PubMed  Google Scholar 

  31. Bikkina RS, et al. The “floating” meniscus: MRI in knee trauma and implications for surgery. AJR Am J Roentgenol. 2005;184(1):200–4.

    Article  PubMed  Google Scholar 

  32. Costa CR, Morrison WB, Carrino JA. Medial meniscus extrusion on knee MRI: is extent associated with severity of degeneration or type of tear? AJR Am J Roentgenol. 2004;183(1):17–23.

    Article  PubMed  Google Scholar 

  33. Jones RS, et al. Direct measurement of hoop strains in the intact and torn human medial meniscus. Clin Biomech (Bristol, Avon). 1996;11(5):295–300.

    Article  Google Scholar 

  34. Crema MD, et al. Factors associated with meniscal extrusion in knees with or at risk for osteoarthritis: the Multicenter Osteoarthritis study. Radiology. 2012;264(2):494–503.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Miller TT, et al. Meniscal position on routine MR imaging of the knee. Skeletal Radiol. 1997;26(7):424–7.

    Article  CAS  PubMed  Google Scholar 

  36. De Maeseneer M, et al. Medial meniscocapsular separation: MR imaging criteria and diagnostic pitfalls. Eur J Radiol. 2002;41(3):242–52.

    Article  PubMed  Google Scholar 

  37. LaPrade RF, Konowalchuk BK. Popliteomeniscal fascicle tears causing symptomatic lateral compartment knee pain: diagnosis by the figure-4 test and treatment by open repair. Am J Sports Med. 2005;33(8):1231–6.

    Article  PubMed  Google Scholar 

  38. Cothran Jr RL, et al. MR imaging of meniscal contusion in the knee. AJR Am J Roentgenol. 2001;177(5):1189–92.

    Article  PubMed  Google Scholar 

  39. Zanetti M, et al. Patients with suspected meniscal tears: prevalence of abnormalities seen on MRI of 100 symptomatic and 100 contralateral asymptomatic knees. AJR Am J Roentgenol. 2003;181(3):635–41.

    Article  PubMed  Google Scholar 

  40. Vande Berg BC, et al. Lesions of the menisci of the knee: value of MR imaging criteria for recognition of unstable lesions. AJR Am J Roentgenol. 2001;176(3):771–6.

    Article  CAS  PubMed  Google Scholar 

  41. Barber BR, McNally EG. Meniscal injuries and imaging the postoperative meniscus. Radiol Clin North Am. 2013;51(3):371–91.

    Article  PubMed  Google Scholar 

  42. Quinn SF, Brown TF. Meniscal tears diagnosed with MR imaging versus arthroscopy: how reliable a standard is arthroscopy? Radiology. 1991;181(3):843–7.

    Article  CAS  PubMed  Google Scholar 

  43. De Smet AA, et al. Diagnosis of meniscal tears of the knee with MR imaging: effect of observer variation and sample size on sensitivity and specificity. AJR Am J Roentgenol. 1993;160(3):555–9.

    Article  PubMed  Google Scholar 

  44. Ahn JH, et al. Longitudinal tear of the medial meniscus posterior horn in the anterior cruciate ligament-deficient knee significantly influences anterior stability. Am J Sports Med. 2011;39(10):2187–93.

    Article  PubMed  Google Scholar 

  45. Harper KW, et al. Radial meniscal tears: significance, incidence, and MR appearance. AJR Am J Roentgenol. 2005;185(6):1429–34.

    Article  PubMed  Google Scholar 

  46. Jung JY, et al. Meniscal tear configurations: categorization with 3D isotropic turbo spin-echo MRI compared with conventional MRI at 3 T. AJR Am J Roentgenol. 2012;198(2):W173–80.

    Article  PubMed  Google Scholar 

  47. Lee YG, et al. Magnetic resonance imaging findings of surgically proven medial meniscus root tear: tear configuration and associated knee abnormalities. J Comput Assist Tomogr. 2008;32(3):452–7.

    Article  PubMed  Google Scholar 

  48. Forkel P, et al. Biomechanical consequences of a posterior root tear of the lateral meniscus: stabilizing effect of the meniscofemoral ligament. Arch Orthop Trauma Surg. 2013;133(5):621–6.

    Article  PubMed  Google Scholar 

  49. Tuckman GA, et al. Radial tears of the menisci: MR findings. AJR Am J Roentgenol. 1994;163(2):395–400.

    Article  CAS  PubMed  Google Scholar 

  50. Watt AJ, Halliday T, Raby N. The value of the absent bow tie sign in MRI of bucket-handle tears. Clin Radiol. 2000;55(8):622–6.

    Article  CAS  PubMed  Google Scholar 

  51. Singson RD, et al. MR imaging of displaced bucket-handle tear of the medial meniscus. AJR Am J Roentgenol. 1991;156(1):121–4.

    Article  CAS  PubMed  Google Scholar 

  52. Dorsay TA, Helms CA. Bucket-handle meniscal tears of the knee: sensitivity and specificity of MRI signs. Skeletal Radiol. 2003;32(5):266–72.

    Article  PubMed  Google Scholar 

  53. Vande Berg BC, et al. Meniscal tears with fragments displaced in notch and recesses of knee: MR imaging with arthroscopic comparison. Radiology. 2005;234(3):842–50.

    Article  PubMed  Google Scholar 

  54. Lecas LK, et al. Inferiorly displaced flap tears of the medial meniscus: MR appearance and clinical significance. AJR Am J Roentgenol. 2000;174(1):161–4.

    Article  CAS  PubMed  Google Scholar 

  55. Haramati N, et al. The flipped meniscus sign. Skeletal Radiol. 1993;22(4):273–7.

    Article  CAS  PubMed  Google Scholar 

  56. Al-Khateeb H, Ruiz A. Lateral meniscal cyst producing lesion of the tibial plateau and literature review. Int J Surg. 2008;6(5):412–4.

    Article  PubMed  Google Scholar 

  57. Lektrakul N, et al. Pericruciate meniscal cysts arising from tears of the posterior horn of the medial meniscus: MR imaging features that simulate posterior cruciate ganglion cysts. AJR Am J Roentgenol. 1999;172(6):1575–9.

    Article  CAS  PubMed  Google Scholar 

  58. Rohilla S, et al. Meniscal ossicle. J Orthop Traumatol. 2009;10(3):143–5.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Kaushik S, et al. Effect of chondrocalcinosis on the MR imaging of knee menisci. AJR Am J Roentgenol. 2001;177(4):905–9.

    Article  CAS  PubMed  Google Scholar 

  60. Newman AP, Daniels AU, Burks RT. Principles and decision making in meniscal surgery. Arthroscopy. 1993;9(1):33–51.

    Article  CAS  PubMed  Google Scholar 

  61. Cannon Jr WD, Morgan CD. Meniscal repair: arthroscopic repair techniques. Instr Course Lect. 1994;43:77–96.

    PubMed  Google Scholar 

  62. Doyle JR, Eisenberg JH, Orth MW. Regeneration of knee menisci: a preliminary report. J Trauma. 1966;6(1):50–5.

    Article  CAS  PubMed  Google Scholar 

  63. Toms AP, et al. Imaging the post-operative meniscus. Eur J Radiol. 2005;54(2):189–98.

    Article  PubMed  Google Scholar 

  64. Arnoczky SP, et al. Magnetic resonance signals in healing menisci: an experimental study in dogs. Arthroscopy. 1994;10(5):552–7.

    Article  CAS  PubMed  Google Scholar 

  65. Farley TE, et al. Meniscal tears: MR and arthrographic findings after arthroscopic repair. Radiology. 1991;180(2):517–22.

    Article  CAS  PubMed  Google Scholar 

  66. Lim PS, et al. Repeat tear of postoperative meniscus: potential MR imaging signs. Radiology. 1999;210(1):183–8.

    Article  CAS  PubMed  Google Scholar 

  67. Milachowski KA, Weismeier K, Wirth CJ. Homologous meniscus transplantation. Experimental and clinical results. Int Orthop. 1989;13(1):1–11.

    CAS  PubMed  Google Scholar 

  68. van Arkel ER, et al. Meniscal allografts: evaluation with magnetic resonance imaging and correlation with arthroscopy. Arthroscopy. 2000;16(5):517–21.

    Article  PubMed  Google Scholar 

  69. Verdonk PC, et al. Meniscal allograft transplantation: long-term clinical results with radiological and magnetic resonance imaging correlations. Knee Surg Sports Traumatol Arthrosc. 2006;14(8):694–706.

    Article  PubMed  Google Scholar 

  70. Siegel MG, Roberts CS. Meniscal allografts. Clin Sports Med. 1993;12(1):59–80.

    CAS  PubMed  Google Scholar 

  71. Potter HG, et al. MR imaging of meniscal allografts: correlation with clinical and arthroscopic outcomes. Radiology. 1996;198(2):509–14.

    Article  CAS  PubMed  Google Scholar 

  72. Verstraete KL, et al. Current status and imaging of allograft meniscal transplantation. Eur J Radiol. 1997;26(1):16–22.

    Article  CAS  PubMed  Google Scholar 

  73. Johnson TC, et al. Osteonecrosis of the knee after arthroscopic surgery for meniscal tears and chondral lesions. Arthroscopy. 2000;16(3):254–61.

    Article  CAS  PubMed  Google Scholar 

  74. MacDessi SJ, et al. Subchondral fracture following arthroscopic knee surgery. A series of eight cases. J Bone Joint Surg Am. 2008;90(5):1007–12.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bolog, N.V., Andreisek, G., Ulbrich, E.J. (2015). Meniscus. In: MRI of the Knee. Springer, Cham. https://doi.org/10.1007/978-3-319-08165-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08165-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08164-9

  • Online ISBN: 978-3-319-08165-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics