Skip to main content

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 7))

Abstract

In the latest years, robotics technologies have been increasingly introduced in rehabilitation with the objective of cost reduction and speed up the recovery process. While with most of the devices the patient is passive, the current challenge is to build devices able to understand patient’s intention and adapt accordingly, forcing his/her active involvement. A way to understand the patient is to use EMG-driven neuromusculoskeletal model able to compute muscle dynamics and joint torques from the electromyography (EMG) signals. While the approach is quite promising, collecting EMG data is still not a simple task as placement of electrodes requires professional skills and EMG data can be affected by electric and magnetic noise.

This work proposes a model that builds upon a reduced experimental database of EMG data from a common rehabilitation movement to develop the capability of predicting EMG values for the same movement executed at arbitrary speed. The reported experimental results are promising, showing a good accuracy in EMG prediction thus enabling the possibility of their use as input for EMG-driven neuromusculoskeletal models. Model applicability, even if limited to repetitive movements, can simplify the use of active rehabilitation devices and still keeping their possibility to be driven by patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wade, D., Hewer, R.: Functional abilities after stroke: measurement, natural history and prognosis. Journal of Neurology, Neurosurgery & Psychiatry 50(2), 177–182 (1987)

    Article  Google Scholar 

  2. Pentland, W., McColl, M., Rosenthal, C.: The effect of aging and duration of disability on long term health outcomes following spinal cord injury. Spinal Cord 33(7), 367–373 (1995)

    Article  Google Scholar 

  3. Van Peppen, R., Kwakkel, G., Wood-Dauphinee, S., Hendriks, H., Van der Wees, P., Dekker, J.: The impact of physical therapy on functional outcomes after stroke: what’s the evidence? Clinical Rehabilitation 18(8), 833–862 (2004)

    Article  Google Scholar 

  4. Kwakkel, G., van Peppen, R., Wagenaar, R., Dauphinee, S., Richards, C., Ashburn, A., Miller, K., Lincoln, N., Partridge, C., Wellwood, I., et al.: Effects of augmented exercise therapy time after stroke a meta-analysis. Stroke 35(11), 2529–2539 (2004)

    Article  Google Scholar 

  5. Sumida, M., Fujimoto, M., Tokuhiro, A., Tominaga, T., Magara, A., Uchida, R.: Early rehabilitation effect for traumatic spinal cord injury. Archives of Physical Medicine and Rehabilitation 82(3), 391–395 (2001)

    Article  Google Scholar 

  6. Jezernik, S., Colombo, G., Keller, T., Frueh, H., Morari, M.: Robotic orthosis lokomat: A rehabilitation and research tool. Neuromodulation: Technology at the Neural Interface 6(2), 108–115 (2003)

    Article  Google Scholar 

  7. Veneman, J.F., Kruidhof, R., Hekman, E., Ekkelenkamp, R., Van Asseldonk, E., van der Kooij: Design and evaluation of the lopes exoskeleton robot for interactive gait rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 15(3), 379–386 (2007)

    Article  Google Scholar 

  8. Hitt, J., Oymagil, A., Sugar, T., Hollander, K., Boehler, A., Fleeger, J.: Dynamically controlled ankle-foot orthosis (DCO) with regenerative kinetics: Incrementally attaining user portability. In: 2007. IEEE Int. Conf. on Robotics and Automation (April 2007)

    Google Scholar 

  9. Blaya, J.A., Herr, H.: Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Transactions on Neural Systems and Rehabilitation Engineering 12(1), 24–31 (2004)

    Article  Google Scholar 

  10. Ferris, D., Gordon, K., Sawicki, G., Peethambaran, A.: An improved powered ankle–foot orthosis using proportional myoelectric control. Gait & Posture 23(4), 425–428 (2006)

    Article  Google Scholar 

  11. Sartori, M., Reggiani, M., Farina, D., Lloyd, D.: EMG-driven forward-dynamic estimation of muscle force and joint moment about multiple degrees of freedom in the human lower extremity. PloS One 7(12), e52618 (2012)

    Google Scholar 

  12. Sartori, M., Reggiani, M., Pagello, E., Lloyd, D.: Modeling the human knee for assistive technologies. IEEE Trans. on Biomedical Eng. 59(9), 2642–2649 (2012)

    Article  Google Scholar 

  13. Fleischer, C., Hommel, G.: A human–exoskeleton interface utilizing electromyography. IEEE Transactions on Robotics 24(4), 872–882 (2008)

    Article  Google Scholar 

  14. Langhorne, P., Coupa, F., Pollock, A.: Motor recovery after stroke: a systematic review. The Lancet Neurology 8(8), 741–754 (2009)

    Article  Google Scholar 

  15. Hermens, H.J., Freriks, B., Merletti, R., Stegeman, D., Blok, J., Rau, G., Disselhorst-Klug, C., Hägg, G.: European recommendations for surface electromyography. Roessingh Research and Development, The Netherlands (1999)

    Google Scholar 

  16. Lloyd, D.G., Besier, T.F.: An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. Journal of Biomechanics 36(6), 765–776 (2003)

    Article  Google Scholar 

  17. Bradski, G., Kaehler, A.: Learning OpenCV: Computer vision with the OpenCV library. O’Reilly Media, Inc. (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Vivian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Vivian, M., Tagliapietra, L., Reggiani, M., Farina, D., Sartori, M. (2014). Design of a Subject-Specific EMG Model for Rehabilitation Movement. In: Jensen, W., Andersen, O., Akay, M. (eds) Replace, Repair, Restore, Relieve – Bridging Clinical and Engineering Solutions in Neurorehabilitation. Biosystems & Biorobotics, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-08072-7_112

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08072-7_112

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08071-0

  • Online ISBN: 978-3-319-08072-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics