Skip to main content

The Zero-Point Field Waves (and) Matter

  • Chapter
  • First Online:
The Emerging Quantum

Abstract

Before our journey comes to an end, we propose to look at one more trace of the zero-point field on matter. In previous chapters, most important aspects of the behavior of quantum systems have been shown to carry the signature of this field. However, one feature that has been left aside so far is the de BroglieDe Broglie, L. wave, just the creature that gave life to the quantum description of matter. De Broglie’s wavelength is reconstructed from the perspective of the present theory and shown to be associated with a wave of electromagnetic nature. This physical notion of theDe Broglie’s wave de Broglie wave is applied to the simplest example of all, the infinite square well, in an effort to refine our image of the motion of particles taking place in this system. Further, the ‘matter diffraction’ by a double slit is explained by arguing that what is really diffracted is the background field, its diverted rays ‘guiding’ the particles to form the well-known diffraction pattern on the far-away screen. Finally, on the other extreme of the scale, a cosmological model is put forward for the zero-point field. It is shown that this permanent component of the background radiation can be considered the result of a regenerative process, sustained by the radiation of all the charges in the Universe; this model explains thus a well-known ‘strange’ relation between the large numbers.

Students should not be taught to doubt that electrons, protons and the like are particles... The waves cannot be observed in any way than by observing particles.

Mott (1964)

The electron is either here, or there, or somewhere else, but wherever it is, it is a point charge.

Feynman et al. (1965)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Previous versions of the material presented in the first part of this chapter can be found in de la Peña and Cetto (1992, 1994), Weron, A. De la Peña, L. Cetto and de la Peña (1955a, b), and The Dice.

  2. 2.

    Detailed, first-hand expositions of de Broglie’s theory can be found in de Broglie (1926, 1956, 1963). Modern presentations by one of its advocates made in Selleri (1990). A most elaborate development of a variant of de Broglie’s theory for the relativistic electron is the geometrical mechanics Geometrical mechanics developed by Synge (1954)Synge, J. L.. An informed historical discussion of de Broglie’s work up to the 1927 Solvay conference is given in Bacciagaluppi and Valentini (2009). MacKinnon (1976)MacKinnon, E. presents a detailed analysis and improvement of de Broglie’s derivation in his thesis. Another detailed discussion of de Broglie’s phase waves is presented in Espinosa (1982).

  3. 3.

    In Surdin (1979)Surdin, M. it is proposed to consider that de Broglie’s wave is of electromagnetic nature, in some undefined way associated with the electromagnetic zpf.

  4. 4.

    A crude way to reach the same conclusion is the following. From the Heisenberg inequality one obtains \(\sigma _{x}^{2}\ge (\hbar ^{2}/4\sigma _{p}^{2}),\) whence the minimum dispersion in the position variable determines an Effective radiuseffective radius \(a\sim (\sigma _{x})_{\text {min}}.\) Such minimum value is achieved for the largest \(\sigma _{p}^{2},\) which in the nonrelativistic regime can be limited by \(m_{0}^{2}c^{2}.\) This results in \(a\sim (\hbar /m_{0}c).\)

  5. 5.

    A detailed discussion can be seen in de la Peña et al. (1982), and The Dice, Sects. 3.4 and 7.3.3. In this latter it is shown that the selfcorrelation of the position coordinate of a harmonic oscillator Oscillatorcontains a permanent oscillatory contribution of a frequency determined by the cutoff Cutoff(Eq. 7.101), and with a value that is not too far from the Compton frequency.

  6. 6.

    Or rather, into the ontology of quantum mechanics. We see in the wave function of quantum mechanics an abstract object that lives in a mathemathical configuration space. By contrast, the de Broglie wave associated with the zpf modulations should be understood as a real wave in three-dimensional space. They are therefore two objects of an entirely different nature.

  7. 7.

    The term wavelet refers to localized nonspreading solutions of massless wave equations that move like massive quantum particles. Wavelets are seen as a bridge between classical point particles and the waves of qm; the mass of the particle is determined by the internal frequency of the wavelet, much as the ‘internal clock’ in the Broglie’s theory.

  8. 8.

    The results obtained with this numerical experiment are similar to those obtained by Couder, Y. Couder and Fort (2006)Fort, E. in their macroscopic Young-type experiment, showing clearly that the bouncing droplet goes through either one of the two slits but the associated wave passes through both slits, and the interferenceInterference of the resulting waves is responsible for the trajectory of the walker.

  9. 9.

    Recently we have become aware of a similar proposal by Mavrychev (1967)Mavrychev, Yu. S. Yu, S., in which the author reaches a comparable result.

  10. 10.

    For some enriching comments of differing nature on the zpf see Ibison (2003)Ibison, M., and Dasgupta and Roy (2007).

References

  • Agazzi, E.: The nature of quantum paradoxes. In: Tarozzi, G., van der Merwe, A. (eds.) Kluwer, Netherlands (1988)

    Google Scholar 

  • *Avendaño, J., de la Peña, L.: Reordering of the scarlets of stochastic electromagnetic field by diffraction due to an ideal slit. Phys. Rev. E 72, 066605 (2005)

    Google Scholar 

  • *Avendaño, J., de la Peña, L.: Matter diffraction through a double slit obtained by numerical simulation using a diffracted random electromagnetic field. Phys. E 42, 313 (2010)

    Article  Google Scholar 

  • Bacciagaluppi, G., Valentini, A.: Quantum Theory at the Crossroads. Reconsidering the 1927 Solvay Conference. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  • Bach, R., Pope, D., Liou, S.-H., Batelaan, H.: Controlled double-slit electron diffraction. New J. Phys. 15, 033016 (2013)

    Article  Google Scholar 

  • Barut, A.O: Diffraction and interference of single de Broglie wavelets. Deterministic wave mechanics, document IC/93/106 (ICTP, Trieste). Reprinted in fondation de Broglie (1993)

    Google Scholar 

  • Blokhintsev. D.I.: Grundlagen der Quantenmechanik (Deut. Verlag d. Wissenschaften, Berlin). From the Russian original of 1949. English translation: Principles of Quantum Mechanics Reidel, Dordrecht (1953/1964)

    Google Scholar 

  • Boyer, T.H.: A brief survey of stochastic electrodynamics. In: Barut, A.O. (ed.) Foundations of Radiation Theory and Quantum Electrodynamics Plenum, New York (1980)

    Google Scholar 

  • Bunge, M.: Foundations of Physics. Springer, New York (1967)

    Google Scholar 

  • Bunge, M.: Philosophy of Physics. Reidel, Dordrecht (1973)

    Google Scholar 

  • Calogero, F.: Cosmic origin of quantization. Phys. Lett. A 228, 335 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • *Cetto, A.M., de la Peña, L.: Environmental effects on the Lamb shift according to stochastic electrodynamics. Phys. Rev. A 37, 1952 (1988a)

    Google Scholar 

  • *Cetto, A.M., de la Peña, L.: Environmental effects on radiative lifetimes and mass renormalization, according to stochastic electrodynamics. Phys. Rev. A 37, 1960 (1988b)

    Article  ADS  Google Scholar 

  • *Cetto, A.M., de la Peña, L. Zeropoint waves and quantum particles. In: Ferrero, M., van der Merwe, A. (eds.) Fundamental Problems in Quantum Physics, p. 47. Kluwer, Amsterdam (1995a)

    Google Scholar 

  • *Cetto, A.M., de la Peña, L.: Wave mechanics: the interplay between stochastics and quanta. In: Garbaczewski, P., Wolf, M., Weron, A. (eds.) Chaos: The Interplay Between Stochastic, Classic and Quanta, p. 51. Springer, Berlin (1995b)

    Google Scholar 

  • Combourieu, M.-C., Rauch, H.: The wave-particle dualism in 1992: a summary. Found. Phys. 22, 1403 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  • Couder, Y., Fort, E.: Single-particle diffraction and interference at a macroscopic scale. Phys. Rev. Lett. 97, 154101 (2006)

    Article  ADS  Google Scholar 

  • Dasgupta, R., Roy, S.: Spectrum of zero-point field and statistical stability. Commun. Appl. Anal. 11, 23 (2007)

    MathSciNet  Google Scholar 

  • de Broglie, L.: Les principes de la nouvelle Mécanique ondulatoire. J. de Physique, série VI, tome VII no. 11(321), 337 (1926)

    Google Scholar 

  • de Broglie, L.: Une Tentative d’interprétation Causale et Non Linéare de la Mécanique Ondulatoire: La Théorie de la Double Solution. Gauthier-Villars, Paris (1956)

    Google Scholar 

  • de Broglie, L.: Recherches sur la Théorie des Quanta. Réédition du texte de 1924, Masson, Paris (1963)

    Google Scholar 

  • *de la Peña, L., Cetto, A.M.: A cosmological implication of stochastic electrodynamics, preprint IFUNAM, Mexico. (Unpublished) (1984).

    Google Scholar 

  • *de la Peña, L., Cetto, A.M.: Role of the zeropoint field in wave mechanics, In: Fondation de Broglie (1992)

    Google Scholar 

  • *de la Peña, L., Cetto, A.M.: The wave properties of matter and the zeropoint radiation field. Found. Phys. 24, 753 (1994)

    Article  ADS  Google Scholar 

  • **de la Peña, L., Cetto, A.M.: The Quantum Dice. An Introduction to Stochastic Electrodynamics, Kluwer, Dordrecht (1996) (Referred to in the book as The Dice)

    Google Scholar 

  • *de la Peña, L., Cetto, A.M.: Estimate of Planck’s constant from a cosmological Mach principle. Found. Phys. Lett. 10, 591 (1997)

    Google Scholar 

  • de la Peña, L., Jiménez, J.L., Montemayor, R.: The classical motion of an extended charged particle revisited. Il Nuovo Cimento B 69, 71 (1982)

    Article  ADS  Google Scholar 

  • Diner, S., Fargue, D., Lochak, G., Selleri, F. (eds.): The Wave Particle Dualism. Reidel, Netherlands (1983)

    Google Scholar 

  • Eddington, A.S.: The Nature of the Physical World. Cambridge University Press, Cambridge (1928)

    Google Scholar 

  • Einstein, A.: Über den Äther. Schweiz. Naturforsch. Gesells. Verh. 105, 85 (1924)

    Google Scholar 

  • Espinosa, J.M.: Physical properties of de Broglie’s phase waves. Am. J. Phys. 50, 357 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  • Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol. III. Addison-Wesley, Reading (1965)

    MATH  Google Scholar 

  • Greenberger, D.M.: The neutron interferometer as a device for illustrating the strange behavior of quantum systems. Rev. Mod. Phys. 55, 875 (1983)

    Article  ADS  Google Scholar 

  • *Ibison, M.: Electrodynamics in the zero-point field: on the equilibrium spectral energy distribution and the origin of inertial mass. Found. Phys. Lett. 16, 83 (2003)

    Article  Google Scholar 

  • Jackson, J.D.: Classical Electrodynamics, 2nd edn. Wiley, New York (1975)

    MATH  Google Scholar 

  • Jönsson, C.: Zeit. Phys. 161, 454. (Partial) English translation: Electron diffraction at multiple slits. Am. J. Phys. 42, 4 1974 (1961)

    Google Scholar 

  • MacKinnon, E.: De Broglie’s thesis: a critical retrospective. Am. J. Phys. 44, 1047 (1976)

    Article  ADS  Google Scholar 

  • Matteucci, G., Pozzi, G.: Two further experiments on electron interference. Am. J. Phys. 46, 619 (1978)

    Article  ADS  Google Scholar 

  • Mavrychev, Yu.S.: Derivation of the relation between cosmological parameters and microphysical constants. Izvestiya VUZOV. Fizika 10, 148 (1967)

    Google Scholar 

  • Maxwell, N.: Instead of particles and fields: a micro realistic quantum “Smearon” theory. Found. Phys. 12, 607 (1981)

    Article  ADS  Google Scholar 

  • Milonni, P.W.: The Quantum Vacuum. An Introduction to Quantum Electrodynamics. Academic Press, San Diego (1994)

    Google Scholar 

  • Mott, N.F.: On teaching quantum phenomena. Contemp. Phys. 5, 401 (1964)

    Article  ADS  Google Scholar 

  • *Puthoff, H.E.: Source of vacuum electromagnetic zero-point energy. Phys. Rev. A 40, 4857 (1989), Reply to Comments on “Source of vacuum electromagnetic zero-point energy”, Puthoff, H.E.: Phys. Rev. A 44, 3385 (1991)

    Google Scholar 

  • Rauch, H., Treimer, W., Bonse, U.: Test of a single crystal neutron interferometer. Phys. Lett. A 47, 369 (1974). For further references see Greenberger 1983

    Google Scholar 

  • Selleri, F.: Quantum Paradoxes and Physical Reality. Kluwer, Dordrecht (1990)

    Book  Google Scholar 

  • Surdin, M.: L’onde de de Broglie et l’électrodynamique stochastique. Ann. Fond. L. de Broglie 4, 139 (1979)

    Google Scholar 

  • Synge, J.L.: Geometrical Mechanics and de Broglie Waves. Cambridge University Press, Cambridge (1954)

    Google Scholar 

  • Weinberg, S.: Gravitation and Cosmology. Wiley, New York (1972)

    Google Scholar 

  • Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1 (1989)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Wick D.: The Infamous Boundary. Seven Decades of Controversy in Quantum Physics. Birkhäuser, Boston (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana María Cetto .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de la Peña, L., Cetto, A.M., Valdés Hernández, A. (2015). The Zero-Point Field Waves (and) Matter. In: The Emerging Quantum. Springer, Cham. https://doi.org/10.1007/978-3-319-07893-9_9

Download citation

Publish with us

Policies and ethics