Skip to main content

Functional Characterization of UNC-53, a Scaffolding Protein During Axon Outgrowth and Cell Migration

  • Chapter
  • First Online:
The UNC-53-mediated Interactome

Part of the book series: SpringerBriefs in Neuroscience ((BRIEFSNEUROSCI))

  • 408 Accesses

Abstract

During Caenorhabditis elegans development, cells and axons undergo migration along the dorsal ventral and anterior posterior axis to reach their final position to form the final structure and connectivity of the nervous system. While guidance molecules regulating the dorsal ventral guidance have been identified and conserved in both vertebrates and invertebrates, very few guidance molecules have been implicated in anterior posterior guidance and outgrowth. UNC-53, a cytoplasmic scaffolding protein, identified based on uncoordinated phenotype of loss-of-function mutants, regulates growth cone migration along the longitudinal axis of the worm. Interestingly, the vertebrate homologs, neuron navigators (NAVs), also play a role in neurite extension, regeneration, and cell migration. Moreover, expression pattern of UNC-53 and NAVs corroborate with their functional requirement during growth cone migrations. Genetic and biochemical analysis provided insight into the molecular mechanism of UNC-53 action during growth cone migration, suggesting that UNC-53 and NAV may be involved in reorganization of cytoskeleton polymers including actin and microtubules, by physically interacting with molecules like SEM-5, ABI-1, and acting with RhoA stimulator UNC-73E.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitken A (2006) Seminars Cancer Biol. 16:162–172

    Google Scholar 

  • Aitken A, Collinge DB, van Heusden BP, Isobe T, Roseboom PH, Rosenfeld G, Soll J (1992) Trends Biochem Sci 17:498–501

    Article  CAS  PubMed  Google Scholar 

  • Alexander F (2000) Neuroblastoma. Urol Clin North Am (3):383–392, vii

    Google Scholar 

  • Balklava Z, Pant S, Fares H, Grant BD (2007) Genome-wide analysis identifies a general requirement for polarity proteins in endocytic traffic. Nat Cell Biol 9:1066–1073

    Article  CAS  PubMed  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    Google Scholar 

  • Buechner M (2002) Tubes and the single C. elegans excretory cell. Trends Cell Biol 12:479–484

    Google Scholar 

  • Chen EB, Branda CS, Stern MJ (1997) Genetic enhancers of sem-5 define components of the gonad-independent guidance mechanism controlling sex myoblast migration in Caenorhabditis elegans hermaphrodites. Dev Biol 182(1):88–100

    Article  CAS  PubMed  Google Scholar 

  • Clark SG, Stern MJ, Horvitz HR (1992) C. elegans cell signaling gene sem-5 encodes a protein with SH2 and SH3 domains. Nature 356:340–344

    Article  CAS  PubMed  Google Scholar 

  • Confalonieri F, Duguet M (1995) A 200-amino acid ATPase module in search of a basic function. BioEssays 17:639–650

    Article  CAS  PubMed  Google Scholar 

  • Coy JF, Wiemanna S, Bechmannb I, Bächnerc D, Nitschb R, Kretzd O, Christiansene H, Poustka A (2002) Pore membrane and/or filament interacting like protein 1 (POMFIL1) is predominantly expressed in the nervous system and encodes different protein isoforms. Genes 290:73–94

    Google Scholar 

  • DeVore DL, Horvitz HR, Stern MJ (1995) An FGF receptor signaling pathway is required for the normal cell migrations of the sex myoblasts in C. elegans hermaphrodites. Cell 83:611–620

    Article  CAS  PubMed  Google Scholar 

  • Evangelista M, Zigmond S, Boone C (2003) Formins: signaling effectors for assembly and polarization of actin filaments. J Cell Sci. 116: 2603–2611

    Google Scholar 

  • Fares H, Greenwald I (2001) Genetic analysis of endocytosis in Caenorhabditis elegans: coelomocyte uptake defective mutants. Genetics 159:133–145

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gavalas A, Krumlauf R (2000) Retinoid signalling and hindbrain patterning. Curr Opin Genet Dev 10:380–386

    Article  CAS  PubMed  Google Scholar 

  • Goley ED, Ohkawa T, Mancuso J, Woodruff JB, D’Alessio JA, Cande WZ, Volkman LE, Welch MD (2006) Dynamic nuclear actin assembly by Arp2/3 complex and a baculovirus WASP-like protein. Science. 314:464–467

    Google Scholar 

  • Gottlieb T, Ivanov I, Adesnik M, Sabatini D (1993) Actin microfilaments play a critical role in endocytosis at the apical but not the basolateral surface of polarized epithelial cells. J Cell Biol 120:695–710

    Article  CAS  PubMed  Google Scholar 

  • Gruenbarg J, Howell KE (1989) Membrane traffic in endocytosis: insights from cell-free assays. Annu. Rev. Cell Biol. 5:453–481

    Google Scholar 

  • Hallberg E, Wozniak RW, Blobel G (1993) An integral membrane protein of the pore membrane domain of the nuclear envelope contains a nucleoporin-like region. J Cell Biol 122:513–521

    Article  CAS  PubMed  Google Scholar 

  • Hartwig JH (1995) Actin-binding proteins. 1: Spectrin super family. Protein Prof 2(7):703–800

    CAS  Google Scholar 

  • Hedgecock EM, Culotti JG, Hall DH, Stern BD (1987) Genetics of cell and axon migrations in Caenorhabditis elegans. Development 100:365–382

    CAS  PubMed  Google Scholar 

  • Hekimi S, Kershaw D (1993) Axonal Guidance defects in a Caenorhabditis elegans mutant reveal cell-extrinsic determinants of neuronal morphology. J Neurosci 13(10):4254–4271

    CAS  PubMed  Google Scholar 

  • Hodgkin J (1983) Male phenotypes and mating efficiency in Caenorhabditis elegans. Genetics 103:43–64

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishiguro H, Shimokawa T, Tsunoda T, Tanaka T, Fujii Y, Nakamura Y, Furukawa Y (2002) Isolation of HELAD1, a novel human helicase gene up‐regulated in colorectal carcinomas. Oncogene 21(41):6387–6394

    Google Scholar 

  • Janke J, Schluter K, Jandrig B, Theile M, Kolble K, Arnold W, Grinstein E, Schwartz A, Estevez-Schwarz L, Schlag PM, Jock-usch BM, Scherneck S (2000) Suppression of tumorigenicity in breast cancer cells by the microfilament protein profilin 1. J Exp Med 191:1675–1686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karenko L, Hahtola S, Päivinen S, Karhu R, Syrjä S, Kähkönen M, Nedoszytko B, Kytölä S, Zhou Y, Blazevic V, Pesonen M, Nevala H, Nupponen N, Sihto H, Krebs I, Poustka A, Roszkiewicz J, Saksela K, Peterson P, Visakorpi T, Ranki A (2005) Primary cutaneous T-cell lymphomas show a deletion or translocation affecting NAV3, the human UNC-53 homologue. Cancer Res. 65(18):8101–8110

    Google Scholar 

  • Katidou M, Tavernarakis N, Karagogeos D (2013) The contactin RIG-6 mediates neuronal and non‐neuronal cell migration in Caenorhabditis elegans. Dev Biol. 373(1):184–195

    Google Scholar 

  • Klein C, Mikutta J, Krueger J, Scholz K, Brinkmann J, Liu D, Veerkamp J, Siegel D, Abdelilah-Seyfried S, le Noble F (2011) Neuron navigator 3a regulates liver organogenesis during zebrafish embryogenesis. Development 138(10):1935–1945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Korenbaum E, Rivero F (2002) Calponin homology domains at a glance. J Cell Sci 115:3543–3545

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni G, Li H, Wadsworth WG (2008) CLEC-38, A Transmembrane Protein with C-Type Lectin-Like Domains, Negatively Regulates UNC-40-Mediated Axon Outgrowth and Promotes Presynaptic Development in Caenorhabditis elegans. J Neurosci. 28:4541–4550

    Google Scholar 

  • Lowenstein EJ, Daly RJ, Batzer AG, Li W, Margolis B, Lammers R, Ullrich A, Skolnik EY, Bar-Sagi D, Schlessinger J (1992) The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell 70(3):431–442

    Article  CAS  PubMed  Google Scholar 

  • Lundquist EA, Reddien PW, Hartwieg E, Horvitz HR, Bargmann CI (2001) Three C. elegans Rac proteins and several alternative Rac regulators control axon guidance, cell migration and apoptotic cell phagocytosis. Development 128:4475–4488

    CAS  PubMed  Google Scholar 

  • Maes T, Barcelo A, Buesa C (2002) Neuron navigator: a human gene family with homology to unc-53, a cell guidance gene from Caenorhabditis elegans. Genomics 80:21–30

    Article  CAS  PubMed  Google Scholar 

  • Marcus-Gueret N, Schmidt KL, Stringham EG (2012) Distinct cell guidance pathways controlled by the Rac and Rho GEF domains of UNC-73/TRIO in Caenorhabditis elegans. Genetics 190:129–142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matteoni R, Kreis TE (1987) Translocation and clustering of endosomes and lysosomes depends of microtubules. J Cell Biol 105:1253–1265

    Article  CAS  PubMed  Google Scholar 

  • Martínez-López MJ, Alcántara S, Mascaró C, Perez-Brangulí F, Ruiz-Lozano P, Maes T, Soriano E, Buesa C (2005) Mouse neuron navigator 1, a novel microtubule-associated protein involved in neuronal migration. Mol Cell Neurosci 28(4):599–612

    Google Scholar 

  • Marzinke MA, Mavencamp T, Duratinsky J, Clagett-Dame M (2013) 14-3-3e and NAV2 interact to regulate neurite outgrowth and axon elongation. Arch Biochem Biophys 540:94–100

    Google Scholar 

  • McCaffery P, Dräger UC (2000) Regulation of retinoic acid signaling in the embryonic nervous system: a master differentiation factor. Cytokine Growth Factor Rev 11(3):233–249

    Article  CAS  PubMed  Google Scholar 

  • McNeill EM, Klöckner-Bormann M, Roesler EC, Talton LE, Moechars D, Clagett-Dame M (2011) Nav2 hypomorphic mutant mice are ataxic and exhibit abnormalities in cerebellar development. Dev Biol 353(2):331–343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McShea MA, Schmidt KL, Dubuke ML, Baldiga CE, Sullender ME, Reis AL, Zhang S, O'Toole SM, Jeffers MC, Warden RM, Kenney AH, Gosselin J, Kuhlwein M, Hashmi SK, Stringham EG, Ryder EF (2013) Abelson interactor-1 (ABI-1) interacts with MRL adaptor protein MIG-10 and is required in guided cell migrations and process outgrowth in C. elegans. Dev Biol. 373(1):1–13

    Google Scholar 

  • Merrill RA, Plum LA, Kaiser ME, Clagett-Dame M (2002) A mammalian homolog of unc-53 is regulated by all-trans retinoic acid in neuroblastoma cells and embryos. Proc Natl Acad Sci USA 99(6):3422–3427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muley PD, McNeill EM, Marzinke MA, Knobel KM, Barr MM, Clagett-Dame M (2008) The atRA-responsive gene neuron navigator 2 functions in neurite outgrowth and axonal elongation. Dev Neurobiol 68:1441–1453

    Google Scholar 

  • Nelson FK, Albert PS, Riddle DL (1983) Fine structure of the Caenorhabditis elegans secretory-excretory system. J Ultrastruct Res 82:156–171

    Article  CAS  PubMed  Google Scholar 

  • Nikolopoulos SN, Spengler BA, Kisselbach K, Evans AE, Biedler JL, Ross RA (2000) The human non-muscle alpha-actinin protein encoded by the ACTN4 gene suppresses tumorigenicity of human neuroblastoma cells. Oncogene 19:380–386

    Article  CAS  PubMed  Google Scholar 

  • Olivier JP, Raabe T, Henkemeyer M, Dickson B, Mbamalu G, Margolis B, Schlessinger J, Hafen E, Pawson T (1993) A Drosophila SH2-SH3 adaptor protein implicated in coupling the sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange, Sos. Cell 73(1):179–191

    Article  CAS  PubMed  Google Scholar 

  • Hafen E, Pawson T (1993) A Drosophila SH2-SH3 adaptor protein implicated in coupling the sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange, Sos. Cell 73(1):179–1191

    Google Scholar 

  • Peeters PJ, Baker A, Goris I, Daneels G, Verhasselt P, Luyten WH, Geysen JJ, Kass SU, Moechars DW (2004) Sensory deficits in mice hypomorphic for a mammalian homologue of unc-53. Brain Res Dev Brain Res. 150(2):89–101

    Google Scholar 

  • Rougon G, Hobert O (2003) New insights into the diversity and function of neuronal immunoglobulin superfamily molecules. Annu Rev Neurosci 26:207–238

    Article  CAS  PubMed  Google Scholar 

  • Schmidt KL, Marcus-Gueret N, Adeleye A, Webber J, Baillie D, Stringham EG (2009) The cell migration molecule UNC-53/NAV2 is linked to the ARP2/3 complex by ABI-1. Development 136:563–574

    Article  CAS  PubMed  Google Scholar 

  • Shimoda Y, Watanabe K (2009) Contactins: emerging key roles in the development and function of the nervous system. Cell Adhes Migr 3:64–70

    Article  Google Scholar 

  • Skoulakis EM, Davis RL (1998) Mol Neurobiol 16:269–284

    Google Scholar 

  • Steven R, Zhang L, Culotti JG, Pawson T (2005) The UNC-73/Trio RhoGEF-2 domain is required in separate isoforms for the regulation of pharynx pumping and normal neurotransmission in C. elegans. Genes Dev 19:2016–2029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stradal T, Kranewitter W, Winder SJ, Gimona M (1998) CH domains revisited FEBS Lett 431:134–137

    Article  CAS  Google Scholar 

  • Stringham E, Pujol N, Vanderchove J, Bogaert T (2002) unc-53 controls longitudinal migration in C. elegans. Development 129:3367–3379

    CAS  PubMed  Google Scholar 

  • Stringham E, Schmidt KL (2009) Navigating the cell UNC-53 and the navigators, a family of cytoskeletal regulators with multiple roles in cell migration, outgrowth and trafficking. Cell Adhes Migr 3(4):342–346

    Article  Google Scholar 

  • Sulston JE, Horvitz HR (1977) Post-embryonic cell lineages of the nematode Caenorhabditis elegans. Dev Biol 56:110–156

    Article  CAS  PubMed  Google Scholar 

  • Thomas JH, Stern MJ, Horvitz HR (1990) Cell interactions coordinate the development of the C. elegans egg-laying. Cell 62:1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Toyo-oka K, Shionoya A, Gambello MJ, Cardoso C, Leventer R, Ward HL, Ayala R, Tsai LH, Dobyns W, Ledbetter D, Hirotsune S, Wynshaw-Boris A (2003) Nat Genet 34:274–285

    Article  CAS  PubMed  Google Scholar 

  • Trent C, Tsung N, Horvitz HR (1983) Egg laying defective mutants of the nematode Caenorhabaditis elegans. Genetics 104:619–647

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsigkari KK, Acevedo SF, Skoulakis EM (2012) 14-3-3ε Is required for germ cell migration in Drosophila. PLoS One 7(5):e36702

    Google Scholar 

  • Vancompernolle K, Goethals M, Huet C, Louvard D, Vandekerckhove J (1992) G- to F-actin modulation by a single amino acid substitution in the actin binding site of actobindin and thymosin beta 4. EMBO J 11:4739–4746

    CAS  PubMed Central  PubMed  Google Scholar 

  • van Haren J, Draegestein K, Keijzer N, Abrahams JP, Grosveld F, Peeters PJ, Moechars D, Galjart N (2009) Mammalian Navigators are microtubule plus-end tracking proteins that can reorganize the cytoskeleton to induce neurite-like extensions. Cell Motil Cytoskelet 66(10):824–838

    Article  Google Scholar 

  • Van Troys M, Vandekerckhove J, Ampe C (1999) Structural modules in actin-binding proteins: towards a new classification. Biochim Biophys Acta 1448:323–348

    Article  PubMed  Google Scholar 

  • Xu Z, Li H, Wadsworth WG (2009) The roles of multiple UNC-40 (DCC) receptor-mediated signals in determining neuronal asymmetry induced by the UNC-6 (netrin) ligand. Genetics 183:941–949

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu H, Chen JK, Feng S, Dalgarno DC, Brauer AW, Schreiber SL (1994). Structural basis for the binding of proline‐rich peptides to SH3 domains. Cell 76:933–945

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amita Pandey .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Pandey, A., Pandey, G.K. (2014). Functional Characterization of UNC-53, a Scaffolding Protein During Axon Outgrowth and Cell Migration. In: The UNC-53-mediated Interactome. SpringerBriefs in Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-07827-4_5

Download citation

Publish with us

Policies and ethics